Token-wise Decomposition of Autoregressive Language Model Hidden States for Analyzing Model Predictions

Byung-Doh Oh William Schuler

oh.531@osu.edu github.com/byungdoh/llm decomposition

The Ohio State University

PAPER

Introduction

Correlation with Other Importance Measures

- There is much recent interest in interpreting the predictions of Transformer-based large language models [1, 6]
- However, analysis has been limited to studying the self-attention mechanism and feedforward network independently [2, 3]
- Additionally, widely used attribution methods (e.g. gradient norms) do
- Evaluation on the CoNLL-2012 corpus [5] and the WSJ corpus [4] • Δ LP calculated using OPT-125M model [7] for each context token

not yield measures that are interpretable in terms of model probabilities • This work presents a linear decomposition of hidden states that preserves the contribution of each input token, and an associated importance measure defined in terms of change in next-word probability

Token-wise Decomposition of LM Hidden States

• Vector of hidden states $\mathbf{x}_{L,i}$ is decomposed exactly into the sum of output representations of each input token $\mathbf{x}_{L,i,k}$ and a cumulative bias $\mathbf{b}_{L,i}$:

Figure 1: Pearson correlation between ΔLP and other importance measures. A-l is average attention at layer l; G-n is n-norm of gradient; IG-n is n-norm of input \times gradient.

Characterizing High-Importance Context Words

• Stepwise regression models fit to the highest ΔLP value at each timestep on CoNLL-2012 [5]

• Baseline predictors: index of predicted word, linear distance from context word, log probability

Predictor	β	t-value	ΔLL
Word index	0.034	1.919	-
Distance	1.126	62.755	-
Log prob.	-0.083	-5.350	-
PMI _{bigram}	1.220	70.857	6151.262*
PMI _{doc}	1.286	73.952	3194.815*
Dependency	1.055	63.720	1981.778*
Coreference	0.123	7.195	25.883*
		I	

- This is achieved by maintaining input-specific vectors $\mathbf{x}_{l,i,k}$ and a bias-like vector $\mathbf{b}_{l,i}$ throughout the network:
- $\mathbf{x}_{l,i,k} \in \mathbb{R}^d$ $\mathbf{b}_{l,i} \in \mathbb{R}^d$ Feedforward Network (Eqs. 20-21) Residual Connection Layer Normalization (N1,out; Eqs. 16-17) $\mathbf{x}'_{l,i,k} + \mathbf{x}_{l-1,i,k} \in \mathbb{R}^d$ $\mathbf{b}'_{l,i} + \mathbf{b}_{l-1,i} \in \mathbb{R}^d$ **Masked Self-Attention** (Eqs. 14-15) Residual Connection Layer Normalization (N_{l,in}; Eqs. 12-13)
- Layer normalization is applied using standard deviation of undecomposed representation
- Attention weights update total representation from source position k to target position i
- Activation function within the feedforward network is approximated using tangent slopes s and intercepts i

 $FF(\mathbf{y}) = \mathbf{F}_2 \,\sigma(\mathbf{F}_1 \,\mathbf{y} + \mathbf{f}_1) + \mathbf{f}_2 \quad (\mathbf{1})$ $= \mathbf{F}_2(\mathbf{s} \odot (\mathbf{F}_1 \mathbf{y} + \mathbf{f}_1) + \mathbf{i}) + \mathbf{f}_2$

- Predictors of interest: document PMI, bigram PMI, syntactic dependency, coreference relationship
- Table 1: Regression coefficients from the
 final regression model and increase in regression model likelihood (Δ LL) from including each predictor of interest. *: *p* < 0.001.

Dependency and Coreference Prediction Using ΔLP

 Precision scores of syntactic dependency and coreference prediction calculated using high-importance words identified through ΔLP

Relation	ΔLP	Base.	PMI_{b}	PMI_{d}	Mention head
Nom. subj.	61.15	39.79	1.38	1.44	Personal pro
Direct obj.	70.43	22.01	0.91	1.57	Possessive p
Oblique	52.54	24.31	-0.68	1.54	Proper noun
Compound	80.44	39.56	4.97	2.93	Proper noun
Nom. mod.	53.84	26.09	-0.41	1.84	Common not
Adj. mod.	82.55	36.02	4.36	2.17	Common not
Determiner	52.03	36.52	1.51	1.08	Possessive e
Case marker	52.38	27.96	-0.29	1.08	Microavg.
Microavg.	56.20	29.22	1.11	1.58	Table 3: Prec

 Table 2: Precision scores calculated using
 ΔLP , random word baseline, and average PMI of frequent syntactic dependency relations in the WSJ corpus.

ad POS Base. Rep.% $\Delta \mathsf{LP}$ 26.55 36.80 30.92 onoun 23.29 36.45 30.59 pronoun 23.19 61.21 68.80 (sg.) 70.67 57.33 68.00 ı (pl.) 43.39 12.55 48.75 oun (sg.) 47.01 24.73 55.03 oun (pl.) 46.28 30.58 40.91 ending 38.21 28.65 43.26

cision scores calculated using ΔLP , most recent head POS baseline, and proportion of repeated head words of frequent coreferent spans in the CoNLL-2012 corpus.

• All bias vectors are accumulated by $\mathbf{b}_{l,i}$

Importance Measure Δ **LP: Change in Probabilities**

The importance of w_k to the prediction of w_{i+1} is calculated as the difference between log probabilities of w_{i+1} given the context with and without w_k :

$$\Delta \mathsf{LP}(w_{i+1} \mid w_{1..i}, w_{k \in \{1,...,i\}}) = \log_2 \mathsf{P}(w_{i+1} \mid w_{1..i}) - \log_2 \mathsf{P}(w_{i+1} \mid w_{1..i \setminus \{k\}}), \quad (2)$$

$$(w_{i+1} \mid w_{1..i \setminus \{k\}}) = \operatorname{SOFTMAX}(\mathbf{z}_i - \mathbf{z}'_{i,k}), \qquad (3)$$

where z_i and $z'_{i,k}$ are the vector of logit scores calculated using $x_{L,i}$ and $x_{L,i,k}$ respectively.

Conclusion

Results suggest that collocational association (PMI) strongly drives the predictions of Transformer-based autoregressive LMs

[1] Belinkov, Y. 2022. Probing classifiers: Promises, shortcomings, and advances.

[2] Geva, M., Caciularu, A., Wang, K., et al. 2022. Transformer feed-forward layers build predictions by promoting concepts in the vocabulary space. [3] Kobayashi, G., Kuribayashi, T., Yokoi, S., et al. 2021. Incorporating residual and normalization layers into analysis of masked language models. [4] Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. 1993. Building a large annotated corpus of English: The Penn Treebank. [5] Pradhan, S., Moschitti, A., Xue, N., et al. 2012. CoNLL-2012 Shared Task: Modeling multilingual unrestricted coreference in OntoNotes. [6] Rogers, A., Kovaleva, O., & Rumshisky, A. 2021. A primer in BERTology: What we know about how BERT works. [7] Zhang, S., Roller, S., Goyal, N., et al. 2022. OPT: Open pre-trained Transformer language models.