oh.531@osu.edu github.com/byungdoh/llm_decomposition

Token-wise Decomposition of Autoregressive Language Model Hidden States for Analyzing Model Predictions

Byung-Doh Oh William Schuler

The Ohio State University

Introduction

• Vector of hidden states $\mathbf{x}_{L,i}$ is decomposed exactly into the sum of output representations of each input token \mathbf{x}_L and a quraulative bias \mathbf{b} . representations of each input token ^x*^L*,*i*,*^k* and a cumulative bias ^b*^L*,*ⁱ* :

not yield measures that are interpretable in terms of model probabilities •This work presents a linear decomposition of hidden states that preserves the contribution of each input token, and an associated importance measure defined in terms of change in next-word probability

Token-wise Decomposition of LM Hidden States

where z_i and $z'_{i,k}$ are the vector of logit scores calculated using $x_{L,i}$ and $x_{L,i,k}$
reasontly alvebre respectively.

 W_{i+1}

- There is much recent interest in interpreting the predictions of Transformer-based large language models [\[1,](#page-0-0) [6\]](#page-0-1)
- However, analysis has been limited to studying the self-attention mechanism and feedforward network independently [\[2,](#page-0-2) [3\]](#page-0-3)
- •Additionally, widely used attribution methods (e.g. gradient norms) do
- •Evaluation on the CoNLL-2012 corpus [\[5\]](#page-0-4) and the WSJ corpus [\[4\]](#page-0-5) •∆LP calculated using OPT-125M model [\[7\]](#page-0-6) for each context token

- •This is achieved by maintaining input-specific vectors ^x*^l*,*i*,*^k* and a bias-like vector ^b*^l*,*ⁱ* throughout the network:
- $\mathbf{x}_{l,i,k} \in \mathbb{R}^d$ $\mathbf{b}_{l,i} \in \mathbb{R}^d$ **Feedforward Network** (Eqs. 20-21) Residual **Connection Layer Normalization** (N_{l,out}; Eqs. 16-17) $\mathbf{x'}_{l,i,k} + \mathbf{x}_{l-1,i,k} \in \mathbb{R}^d \quad \mathbf{b'}_{l,i} + \mathbf{b}_{l-1,i} \in \mathbb{R}^d$ **Masked Self-Attention** (Eqs. 14-15) Residual **Connection Layer Normalization** (N_{l,in}; Eqs. 12-13)
- Layer normalization is applied using standard deviation of undecomposed representation
- Attention weights update total representation from source position *k* to target position *i*
- Activation function within the feedforward network is approximated using tangent slopes s and intercepts i

 $\mathsf{FF}(\mathbf{y}) = \mathbf{F}_2 \, \sigma(\mathbf{F}_1 \, \mathbf{y} + \mathbf{f}_1) + \mathbf{f}_2$ (1) $=$ $\mathbf{F}_2(\mathbf{s} \odot (\mathbf{F}_1 \mathbf{y} + \mathbf{f}_1) + \mathbf{i}) + \mathbf{f}_2$

- •Predictors of interest: document PMI, bigram PMI, syntactic dependency, coreference relationship
- Table 1: Regression coefficients from the final regression model and increase in regression model likelihood (∆LL) from including each predictor of interest. *: $p < 0.001$.

•All bias vectors are accumulated by ^b*^l*,*ⁱ*

Importance Measure ∆**LP: Change in Probabilities**

The importance of w_k to the prediction of w_{i+1} is calculated as the difference between log probabilities of w_{i+1} given the context with and without w_k :

$$
\Delta LP(w_{i+1} | w_{1..i}, w_{k \in \{1,...,i\}}) = \log_2 P(w_{i+1} | w_{1..i}) - \log_2 P(w_{i+1} | w_{1..i \setminus \{k\}}),
$$
(2)

$$
P(w_{i+1} | w_{1..i \setminus \{k\}}) = \text{SoftMAX}(\mathbf{z}_i - \mathbf{z}'_{i,k}),
$$
(3)

Correlation with Other Importance Measures

cision scores calculated using ∆LP, most recent head POS baseline, and proportion of repeated head words of frequent coreferent spans in the CoNLL-2012 corpus.

Figure 1: Pearson correlation between ∆LP and other importance measures. A-*l* is average attention at layer *l*; G-*n* is *n*-norm of gradient; IG-*n* is *n*-norm of input × gradient.

Characterizing High-Importance Context Words

•Stepwise regression models fit to the highest ∆LP value at each timestep on CoNLL-2012 [\[5\]](#page-0-4)

•Baseline predictors: index of predicted word, linear distance from context word, log probability

Dependency and Coreference Prediction Using ∆**LP**

•Precision scores of syntactic dependency and coreference prediction calculated using high-importance words identified through ∆LP

Table 2: Precision scores calculated using

∆LP, random word baseline, and average PMI of frequent syntactic dependency relations in the WSJ corpus.

Conclusion

Results suggest that collocational association (PMI) strongly drives the predictions of Transformer-based autoregressive LMs

[1] Belinkov, Y. 2022. Probing classifiers: Promises, shortcomings, and advances.

[2] Geva, M., Caciularu, A., Wang, K., et al. 2022. Transformer feed-forward layers build predictions by promoting concepts in the vocabulary space. [3] Kobayashi, G., Kuribayashi, T., Yokoi, S., et al. 2021. Incorporating residual and normalization layers into analysis of masked language models. [4] Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. 1993. Building a large annotated corpus of English: The Penn Treebank. [5] Pradhan, S., Moschitti, A., Xue, N., et al. 2012. CoNLL-2012 Shared Task: Modeling multilingual unrestricted coreference in OntoNotes. [6] Rogers, A., Kovaleva, O., & Rumshisky, A. 2021. A primer in BERTology: What we know about how BERT works. [7] Zhang, S., Roller, S., Goyal, N., et al. 2022. OPT: Open pre-trained Transformer language models.