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Language model surprisal in cognitive modeling

If you were to journey ...

Processing difficulty of journey ∝ − log2 P(journey | If you were to)︸ ︷︷ ︸
surprisal

Hale (2001), Levy (2008)

Word If you were to journey
Reading Time 571 ms 354 ms 386 ms 383 ms 457 ms
LM1 Surprisal 7.76 0.81 5.42 2.09 14.62
LM2 Surprisal 6.71 0.78 5.22 2.30 13.93
LM3 Surprisal 7.10 0.56 5.15 2.39 15.02

Wilcox et al. (2020), Oh and Schuler (2023), i.a.
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The field has overlooked token granularity

Finer granularity, more character-like (|V | = 256)
␣ I f ␣ y o u ␣w er e ␣to ␣ j o ur n e y

Coarser granularity, more word-like (|V | = 128000)
␣If ␣you ␣were ␣to ␣journey

1. Encodes word length and frequency information
2. Changes co-occurrence statistics, sequence lengths, ...

→ We evaluate surprisal with different token granularities against reading time data
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Methods 1: Tokenizer training

Tokenizer: Unigram language model (Kudo, 2018) tokenizer

Vocabulary sizes: {256, 512, 1k, 2k, 4k, 8k, 16k, 32k, 48k, 64k, 128k}

Data: 1M articles from English Wiki-40B train (Guo et al., 2020)

4 / 18



Methods 1: Tokenizer training

Tokenizer: Unigram language model (Kudo, 2018) tokenizer

Vocabulary sizes: {256, 512, 1k, 2k, 4k, 8k, 16k, 32k, 48k, 64k, 128k}

Data: 1M articles from English Wiki-40B train (Guo et al., 2020)

4 / 18



Methods 1: Tokenizer training

Tokenizer: Unigram language model (Kudo, 2018) tokenizer

Vocabulary sizes: {256, 512, 1k, 2k, 4k, 8k, 16k, 32k, 48k, 64k, 128k}

Data: 1M articles from English Wiki-40B train (Guo et al., 2020)

4 / 18



Methods 2: Language model training

Neural network architecture: Mamba-2 (Dao & Gu, 2024)

Models: 11 tokenizers × 3 sizes

Model #L #H dmodel #Parameters

Small 6 8 256 ∼2.6M
Medium 12 16 512 ∼19.8M
Large 24 24 768 ∼88.0M

Data: ∼5.2M articles (∼1.5B words) from English Wiki-40B train (Guo et al., 2020)
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Evaluation 1: Impact on fit to naturalistic reading times

Reading times from Natural Stories, Brown, GECO, Dundee, Provo
(Cop et al., 2017; Futrell et al., 2021; Kennedy et al., 2003; Luke & Christianson, 2018; Smith & Levy, 2013)

Surprisal calculated from the LMs, both at the start and end of training

Surprisal’s contribution to held-out regression log-likelihood (∆LogLik) measured
(∼641k data points)
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Before LM training: Strong influence of token granularity

Better
Fit

Poorer
Fit
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After LM training: Strong interaction between model size and token granularity
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Fit
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Experiment 2: Impact on surprisal-based garden-path effects

The suspect sent the file deserved further investigation ...
The suspect who was sent the file deserved further investigation ...

→ People read deserved much more slowly than deserved

Stimuli pairs and self-paced reading data from the SAP Benchmark
(3 garden-path constructions, 24 pairs each; Huang et al., 2024)

Surprisal-to-RT conversion model fit to reading times of non-garden-path sentences
(∼996k data points)

Conversion model used to predict difference in reading times at deserved and deserved
(∼48k data points)
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No clear trend in estimated garden-path effects
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Coarser-grained tokens lead to larger differences in raw surprisal
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Conclusion

Strong influence of token granularity, especially for smaller models

Improved fit to reading times probably due to ‘sneaky’ word length and frequency

Hot take: Let’s use coarser-grained tokens – less prone to this issue, easier to interpret
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Thank you for listening!

Envelope oh.b@nyu.edu
Github byungdoh/ssm-surprisal
🤗 byungdoh/ssm-token-granularity

This work was supported by NSF grant #1816891
and NYU IT High Performance Computing
resources, services, and staff expertise.
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