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A recent trend in computational psycholinguistics has been to use large pretrained neural lan-
guage models (NLMs) to generate surprisal estimates [2, 5, 8]. Although there is some evidence
that NLM surprisal is predictive of human behavioral responses [2, 5], there has been very little work
(see [4]) comparing its predictive power to that of surprisal from structural parser-based processing
models. In this study, we conduct regression analyses on three different datasets and demonstrate
that surprisal estimates from a sentence processing model informed by syntactic and morpholog-
ical structure contribute to substantially better fits than those from widely-used pretrained NLMs
[3, B, 4, 9] on self-paced reading and eye-tracking data, but not on fMRI data.

To this end, we use a non-recurrent neural extension of a left-corner parser [12] that has a
character-based model for estimating word generation probabilities at preterminal nodes. The
proposed model defines a process of generating words w; from underlying lemmas x; and mor-
phological rules r;, which allows the processing model to capture the predictability of given word
forms in a fine-grained manner.

In order to evaluate the quality of surprisal estimates from the sentence processing model in-
formed by syntactic and morphological structure (Structural Model) as well as those from widely
used pretrained NLMs (GLSTM [3], JLSTM [6], RNNG [4], GPT2 [9]), linear mixed-effects regres-
sion analyses were conducted to evaluate model fit in terms of log-likelihood improvement on top
of a baseline regression model. To this end, surprisal predictors for the Natural Stories self-paced
reading corpus [1] and the Dundee eye-tracking corpus [7] were calculated from the structural
model and the pretrained NLMs. The baseline predictors included were word length, word po-
sition, and unigram surprisal for Natural Stories, and word length, word position, and saccade
length for Dundee. All predictors were z-transformed prior to fitting, and all surprisal predictors
were spilled over by one position. All regression models included by-subject random slopes for
all fixed effects. The results show that on both corpora, surprisal from the structural model made
the biggest contribution to model fit in comparison to surprisal from the pretrained NLMs (Figures
and [ib, difference between structural model and other models significant with p < 0.001 by a
permutation test). This finding, despite the fact that the pretrained NLMs were trained on much
larger datasets (Table [l]) and also show lower perplexities on test data, suggests that the structural
model may provide a more human-like account of processing difficulty and may suggest a larger
role of morphology, phonotactics, and orthographic complexity than was previously thought.

Additionally, to examine whether a similar tendency is observed in brain responses, we ana-
lyzed the time series of blood oxygenation level-dependent (BOLD) signals identified using func-
tional magnetic resonance imaging (fMRI) with continuous-time deconvolutional regression (CDR;
[11]). For this experiment, we used the fMRI data of the language network used in [10], which
were collected from 78 subjects that listened to a recorded version of the Natural Stories Corpus.
Similarly, a baseline CDR model and a series of CDR models that include each surprisal estimate
were fitted to BOLD measures. The baseline predictors included were the index of current fMRI
sample, unigram surprisal, and the deconvolutional intercept. Subsequently, the contribution of
each surprisal estimate was examined by calculating the improvement in regression log-likelihood.
The results show that in contrast to self-paced reading and eye-tracking data, surprisal from GPT2
made the biggest contribution to regression model fit (Figure fid, difference between GPT2 and
other models significant with p < 0.001 by a permutation test, other comparisons not significant).

Taken together, these results suggest that sentence processing is not purely driven by accurate
next-word prediction that large NLMs are capable of. In addition, the differential contribution of
surprisal from the structural model suggests that latency-based measures and blood oxygenation
levels may capture different aspects of processing difficulty.
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Figure 1: Perplexity measures from each model, and improvements in regression model log-likelihood from
including surprisal estimates from each model. The perplexity of the structural model and the RNNG model
is higher partly because they are optimized to predict a joint distribution over words and parse trees.

Model Training corpus
GPT2[9] >1B tokens
JLSTM [B] ~800M tokens
GLSTM [3] ~80M tokens
RNNG [4] ~950k tokens
Structural Model | ~950k tokens

Table 1: The training corpus size for each model.
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