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Introduction

Evaluation of surprisal estimates from large neural language models
(NLMs) (Goodkind & Bicknell, 2018; Hao et al., 2020; Prasad et al., 2019)

Very little work (e.g. Hale et al.,, 2018) comparing their predictive power to that of
surprisal from structural parser-based processing models

This work: Comparison of predictive power of surprisal estimates from
different models on three different datasets (SPR, ET, fMRI)
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Extension to our Structural Processing Model

Word generation probability, P( horses | horse; NP )

@ To alemma x,, apply a morphological rule 7, to
generate word w;,

@ Lemma x;: result of applying GCG lemmatization
— ) rules (e.g. horse)

@ Morphological rule r;: inverse of GCG
lemmatization rules (e.g. attach-s)

} POvi | p) =) P(x | po)-
: P | pyoxy) -
i P(w;: | pr x: 1)

\ @ Two character-based RNN sub-models for
horses estimating P(x; | p,) and P(r; | p; x;)
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Psycholinguistic Evaluation

Comparison of our surprisal estimates against those from widely-used
pretrained language models

@ GLSTM (Gulordava et al., 2018)

@ JLSTM (Jozefowicz et al., 2016)

@ RNNG (Hale et al., 2018)

@ GPT2 (Radford et al., 2019)

Evaluation metric: Alog-likelihood (Goodkind & Bicknell, 2018; Hao et al., 2020)
@ Improvement in log-likelihood due to including a surprisal predictor

Evaluation on
@ Natural Stories self-paced reading (Futrell et al., 2018)
@ Dundee eye-tracking (Kennedy et al., 2003)
@ Natural Stories fMRI (Shain et al., 2019)
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@ Our structural model may provide a more human-like account of processing difficulty

@ May suggest a larger role of morphology, phonotactics, and orthographic complexity

@ Latency-based measures and blood oxygenation levels may capture different
aspects of processing difficulty
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Conclusion

@ An incremental parser that incorporates information about
propositional content and syntactic categories into a probability model

@ Independent contribution of propositional content and syntactic
category information in predicting reading times

@ A character-based model that can be used to estimate word
generation probabilities in a parser-based model

@ Substantially better fits to self-paced reading and eye-tracking data
compared to surprisal from widely-used NLMs
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Thank you for listening!

Source code:
https://github.com/modelblocks/modelblocks-release
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