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Introduction

Evaluation of surprisal estimates from large neural language models
(NLMs) (Goodkind & Bicknell, 2018; Hao et al., 2020; Prasad et al., 2019)

Very little work (e.g. Hale et al., 2018) comparing their predictive power to that of
surprisal from structural parser-based processing models

This work: Comparison of predictive power of surprisal estimates from
different models on three different datasets (SPR, ET, fMRI)
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Extension to our Structural Processing Model

NP

horses

horse1

Word generation probability, P( horses | horse1 NP )
To a lemma xt, apply a morphological rule rt to
generate word wt

Lemma xt: result of applying GCG lemmatization
rules (e.g. horse)

Morphological rule rt: inverse of GCG
lemmatization rules (e.g. attach-s)

P(wt | pt) =
∑
xt ,rt

P(xt | pt) ·
P(rt | pt xt) ·
P(wt | pt xt rt)

Two character-based RNN sub-models for
estimating P(xt | pt) and P(rt | pt xt)
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Psycholinguistic Evaluation

Comparison of our surprisal estimates against those from widely-used
pretrained language models

GLSTM (Gulordava et al., 2018)

JLSTM (Jozefowicz et al., 2016)

RNNG (Hale et al., 2018)

GPT2 (Radford et al., 2019)

Evaluation metric: ∆log-likelihood (Goodkind & Bicknell, 2018; Hao et al., 2020)

Improvement in log-likelihood due to including a surprisal predictor

Evaluation on
Natural Stories self-paced reading (Futrell et al., 2018)

Dundee eye-tracking (Kennedy et al., 2003)

Natural Stories fMRI (Shain et al., 2019)
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Results

(a) Baseline LL: -17485.2 (b) Baseline LL: -60807.5 (c) Baseline LL: -269825.1

Our structural model may provide a more human-like account of processing difficulty

May suggest a larger role of morphology, phonotactics, and orthographic complexity

Latency-based measures and blood oxygenation levels may capture different
aspects of processing difficulty
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Conclusion

An incremental parser that incorporates information about
propositional content and syntactic categories into a probability model

Independent contribution of propositional content and syntactic
category information in predicting reading times

A character-based model that can be used to estimate word
generation probabilities in a parser-based model

Substantially better fits to self-paced reading and eye-tracking data
compared to surprisal from widely-used NLMs
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Thank you for listening!

Source code:
https://github.com/modelblocks/modelblocks-release
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