Unified Unsupervised Grammar Induction for Typologically Diverse Languages

THE OHIO STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF LINGUISTICS

Byung-Doh Oh

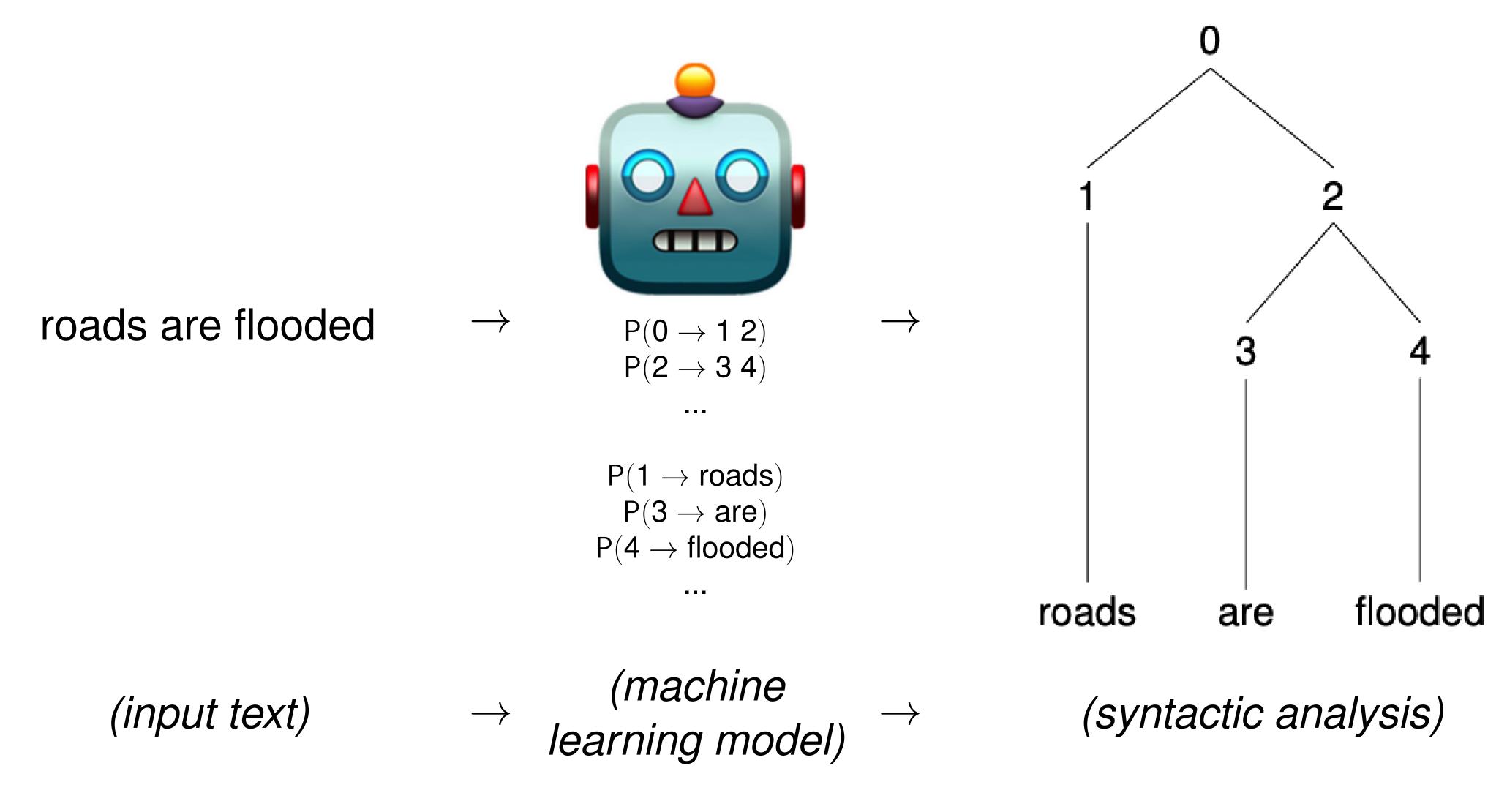
Department of Linguistics, The Ohio State University

byungdoh.github.io

oh.531@osu.edu

Unsupervised Grammar Induction

- Rapid and accurate syntactic analysis of sentences is crucial for applications like machine translation and information extraction
- Unsupervised learning is attractive for use in scenarios where low-resource languages are spoken
- Still remains as a largely unsolved problem in natural language processing



Current Approaches

• Probability estimation using deep neural networks [2, 3, 5] by maximizing marginal probability of input sentence σ , which consists of rule probabilities from phrase to phrases ($c_{\eta} \rightarrow c_{\eta 1} \ c_{\eta 2}$) and from phrase to word ($c_{\eta} \rightarrow w_{\eta}$)

$$\mathsf{P}(\sigma) = \sum_{\tau \text{ for } \sigma} \prod_{\eta \in \tau \text{ s.t. } c_{\eta} \to c_{\eta 1}} \mathsf{P}(c_{\eta} \to c_{\eta 1} \ c_{\eta 2}) \cdot \prod_{\eta \in \tau \text{ s.t. } c_{\eta} \to w_{\eta}} \mathsf{P}(c_{\eta} \to w_{\eta})$$

- There is currently a high research focus on high-resource languages like English and Chinese [3, 5]
- English and Chinese have very simple word-internal structures, and represent one end of the typological spectrum
- The typical approach has been to model these probabilities using a classifier over word types, which works well for languages like English and Chinese, but not all languages

$$\mathsf{P}_{word}(c_{\eta} \to w_{\eta}) = \mathsf{P}(\mathsf{Term=1} \mid c_{\eta}) \cdot \mathsf{SoftMax}(\mathsf{ResNet}(\mathbf{v}_{c_{\eta}}))$$

• For more morphologically rich languages, sequence models can be used to capture word-internal patterns [2]

$$\mathsf{P}_{char}(c_{\eta} \to w_{\eta}) = \mathsf{P}(\mathsf{Term=1} \mid c_{\eta}) \cdot \prod_{l_{i} \in \{l_{1}, \dots, l_{n}\}} \mathsf{P}(l_{i} \mid c_{\eta}, l_{1}, \dots, l_{i-1})$$

Main Observations

 Multilingual induction experiments show favorable results for character-based model, with especially higher results on morphologically rich languages than word-based model [2]

Models	Individual languages										Average
		Chinese	English	French	German	Hebrew	Japanese	Korean	Polish	Vietnamese	
word (RH)	23.0	20.8	29.7	29.8	33.8	21.6	29.8	11.7	22.0	15.1	23.7
char (RH)	29.1	23.9	33.4	40.7	39.3	29.5	40.2	16.3	21.0	12.8	28.5
word (F1)	36.9	41.3	44.4	41.5	44.4	40.0	42.4	23.3	35.2	37.5	38.7
char (F1)	42.0	44.9	49.9	51.5	47.7	48.6	55.9	34.6	33.1	28.7	43.7

- Highlights the importance of typological properties of the target language for deploying grammar induction systems
- However, the typology of the target language is likely to be unknown in an under-resourced setting
- Additionally, the amount and distribution of available text may result in more accurate syntactic analyses from one model over another

Future Work: Leveraging Representations From Neural Language Models

- These factors complicate *a priori* decisions about the model to be employed and motivate a **unification** of word-level and character-level information in a data-driven manner
- This can be achieved by leveraging vectorial representations from neural language models [1, 4], which are trained to predict the correct word given its neighboring context and therefore does not require manually annotated data
- These language models have been shown to yield high-quality representations that embody different levels of linguistic information
- Preliminary experiments posed a challenge in the stable estimation of $P(c_{\eta} \to w_{\eta})$ using these representations as input, as the same word can lie in vastly different areas of the vector space depending on the context
- Research into techniques to overcome this problem will further advance our understanding of learning syntactic structures as well as our ability to communicate in languages with limited resources

References

- [1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint, 2018.
- [2] L. Jin, B.-D. Oh, and W. Schuler. Character-based PCFG induction for modeling the syntactic acquisition of morphologically rich languages. In Findings of the 2021 Conference on Empirical Methods in Natural Language Processing., pages 4367–4378, 2021.
- [3] Y. Kim, C. Dyer, and A. Rush. Compound probabilistic context-free grammars for grammar induction. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 2369–2385, 2019.
- [4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners. *OpenAl Technical Report*, 2019.
- [5] H. Zhu, Y. Bisk, and G. Neubig. The return of lexical dependencies: Neural lexicalized PCFGs. *Transactions of the Association for Computational Linguistics*, 8:647–661, 2020.