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Prediction in human sentence processing

The boy will eat the
ball

cake

cake is easier to process than ball because P(cake | ...) > P(ball | ...) (Hale, 2001; Levy, 2008)

Surprisal has gained strong empirical support from measures of comprehension difficulty
(e.g. Demberg & Keller, 2008; Shain et al., 2020; Smith & Levy, 2013)

Research goal of characterizing the probability distribution of the human comprehender
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Systematic divergence of Transformer-based LM surprisal
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Oh and Schuler (2023a) Oh and Schuler (2023b)

How does model size and training data interact to result in such divergence?
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Insights from the scaling behavior of LLMs

Larger models ‘learn faster’ given the same amount of exposure (Tirumala et al., 2022)

Early in training, all models similarly learn to predict frequent function words (Xia et al., 2023)

Word frequency modulates the difference in surprisal estimates as a function of model size and
training data amount, which drives their adverse effects on fit to human reading times.
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This work

Experiment 1: Word frequency and adverse effect of model size

Experiment 2: Word frequency and adverse effect of training data amount

Follow-up analysis: What enables larger models to predict rare words?

Discussion and conclusion
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Experiment 1: Word frequency and adverse effect of model size

LME models fit to reading times of Natural Stories, Dundee, Ghent, and Provo corpora
(Cop et al., 2017; Futrell et al., 2021; Kennedy et al., 2003; Luke & Christianson, 2018)

Baseline predictors: Word length/position, unigram surprisal (tokens from Gao et al., 2020),
saccade length, previous word fixated

Predictors of interest: GPT-2, GPT-Neo, OPT, Pythia surprisal (Biderman et al., 2023; Black
et al., 2022; Black et al., 2021; Radford et al., 2019; Wang & Komatsuzaki, 2021; Zhang et al., 2022)

Mean squared errors calculated on each quintile defined by unigram log-probability
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Larger models yield poorer fits to reading times
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These effects are the largest on rare words
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Experiment 2: Word frequency and adverse effect of training data amount

Similar regression modeling procedures as Experiment 1

Predictors of interest: Pythia surprisal after {0, 128, 256, 512, 1k, 2k, 4k, 8k, 143k}
training steps (Biderman et al., 2023)

Surprisal values and MSEs analyzed by quintile defined by unigram log-probability
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Rare words are learned more accurately by larger models with more data
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Rare words are learned more accurately by larger models with more data
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Follow-up analysis: What enables larger models to predict rare words?

One possibility is that larger models have a longer ‘effective’ context window

We examine this possibility through a feature attribution analysis

Method: Limiting the context to the most recent {49, 24, 9} tokens (Kuribayashi et al., 2022)

Change in Pythia surprisal values analyzed on the quintile of least frequent words
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Larger models have widespread associations for predicting rare words
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Discussion and conclusion

Word frequency explains the adverse effects of model size and training data amount

Larger model and training data sizes contribute to accurate predictions of rare words

This has implications for studying the dissociability of frequency vs. predictability effects
(Goodkind & Bicknell, 2021; Shain, 2019, 2023)

Possible extension to data collected in other languages
(de Varda & Marelli, 2023; Kuribayashi et al., 2021; Wilcox et al., 2023)
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Thank you for listening!

oh.531@osu.edu byungdoh.github.io
byungdoh/llm_surprisal
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