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Prediction in human sentence processing

The boy will eat the
ball

cake

cake is easier to process than ball because P(cake | ...) > P(ball | ...) (Hale, 2001; Levy, 2008)

Surprisal has gained strong empirical support from measures of comprehension difficulty
(e.g. Demberg & Keller, 2008; Shain et al., 2020; Smith & Levy, 2013)
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This work

Conflicting results about the relationship between LM perplexity and fit to reading times

Wilcox et al. (2020) Oh and Schuler (2023)

Covering the middle ground by evaluating smaller models trained on less data
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Experiment 1: Influence of training data size

Regression models fit to reading times of
Natural Stories and Dundee corpora
(Futrell et al., 2021; Kennedy et al., 2003)

Baseline predictors: word length/position,
saccade length, previous word fixated

Predictors of interest: LLM surprisal
(Biderman et al., 2023)

Evaluation metric: ∆log-likelihood (∆LL)

Model #L #H dmodel
Pythia 70M 6 8 512
Pythia 160M 12 12 768
Pythia 410M 24 16 1024
Pythia 1B 16 8 2048
Pythia 1.4B 24 16 2048
Pythia 2.8B 32 32 2560
Pythia 6.9B 32 32 4096
Pythia 12B 36 40 5120

Trained in batches of 1024×2048 tokens
Checkpoints available after {1, 2, 4, ..., 512, 1000,
2000, ..., 142000, 143000} training steps
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Experiment 2: Influence of model size

Smaller LMs trained following the procedures of the Pythia LM

Model #L #H dmodel #Parameters
Repro 1-1-64 1 1 64 ∼6M
Repro 1-2-128 1 2 128 ∼13M
Repro 2-2-128 2 2 128 ∼13M
Repro 2-3-192 2 3 192 ∼20M
Repro 2-4-256 2 4 256 ∼27M
Repro 3-4-256 3 4 256 ∼28M
Repro 4-6-384 4 6 384 ∼46M
Repro 6-8-512 6 8 512 ∼70M

LMs evaluated after {1, 2, 4, ..., 512, 1000, 1500, ..., 9500, 10000} training steps
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Summary: Bigger-is-worse effect of training data

Fit to reading times starts to degrade after about two billion tokens of training data

Very strong interaction between model size and amount of training data

Consolidates conflicting results about LM perplexity and fit to reading times

This systematic divergence sheds light on what human sentence processing is not
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Thank you for listening!

oh.531@osu.edu byungdoh.github.io
byungdoh/slm_surprisal
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