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©® Most English language models (LMs) build whitespaces directly into the front of their token © Increased LM size and training data help accurate predictions of low-frequency words. Therefore,
® P(mat | | was a) is often calculated as P(_mat | <s> I _was _a), resulting in inconsistent word probabilities ® Consequence 1: Difference in fit to reading times is the largest on the subset of low-frequency words
® Correcting this to P(mat _ | <s> I _was _a ._) reveals a larger divergence of LM surprisal from reading times ® Consequence 2: Word frequency shows differential fits to reading times depending on baseline surprisal

More in Frequency explains the inverse correlation of large language models’ size, training data amount, and surprisal’s fit to reading times.

More in Leadi hi fl S’ | f f lculati d probabilities. Proc. EMNLP, .
ore In Leading whitespaces of language models subword vocabulary pose a confound for calculating word probabilities. Froc Proc. EACL.; Dissociable frequency effects attenuate as large language model surprisal predictors improve. Under review at JML.

Word probabilities in psycholinguistics Exp. 1: Revisiting LMs’ garden path effects Word frequency has a strong influence on LM probabilities
Word probabilities allow us to evaluate what LMs learn, < Atfter the doctor left the room turned very dark ... Larger LMs boost probabilities more given the same training data [13], assigning lower surprisal to low-frequency words
and study real-time processing difficulty in humans
y P J Y After the doctor left, the room turned very dark ... This leads to two consequences when modeling reading times using LM surprisal and word frequency
Word  /f you were to LMs severely underpredict the difficulty at turned [4] | | |
Reading Time 360ms 304ms 270ms 292 ms | o N _ Consequence 1: Difference in errors is the largest on low-frequency words
LM1 Surprisal ~ 7.76 0.81 5 49 5 09 Increase in reading time across conditions estimated
with GPT-2 LMs [9], following Huang et al. [4] Surprisal from Pythia LMs [1] fit to five self-paced reading and eye-tracking datasets [10 measures; 2, 3, 5, 6, 12]
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Most English tokenizers [10] have leading whitespaces, & 7] = = _ = 587504 - - _ = 461504
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(2) o5® (BN T e YT T e a0 p T Consequence 2: Word frequency compensates for LM surprisal
Jnder this practice, GPT-2 Models
P(mat| | was a) > P(matron | | was a), and cf. Human effect sizes: ~120 ms, ~150 ms, ~65 ms Surprisal Over Frequency Frequency Over Surprisal
P(mat| | was a) + P(matron | | was a) can exceed 1
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Exp. 2: Revisiting LMs’ fit to naturalistic RT ~ 30001 I . _ X
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After a certain point, deleterious effects of LM size and < 2000- S _
The probability of the trailing whitespace should be ac-  training data amount on fit to naturalistic RT [7] 5 1500- © 1507
counted for as part of the word probability instead: _ _ _ _ D . 0o 2 100 B
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