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Key Takeaways

1 Most English language models (LMs) build whitespaces directly into the front of their token
2 P(mat | I was a) is often calculated as P(!mat | <s> I !was !a), resulting in inconsistent word probabilities
3 Correcting this to P(mat ! | <s> I !was !a !) reveals a larger divergence of LM surprisal from reading times

More in Leading whitespaces of language models’ subword vocabulary pose a confound for calculating word probabilities. Proc. EMNLP.

Word probabilities in psycholinguistics

Word probabilities allow us to evaluate what LMs learn,
and study real-time processing difficulty in humans

Word If you were to
Reading Time 360 ms 304 ms 270 ms 292 ms
LM1 Surprisal 7.76 0.81 5.42 2.09
LM2 Surprisal 6.71 0.78 5.22 2.30
LM3 Surprisal 7.10 0.56 5.15 2.39

Problem: Inconsistent word probabilities

Most English tokenizers [10] have leading whitespaces,
which has resulted in the common practice of:

P(mat | I was a) = P(!mat | <s> I !was !a) (1)

P(matron | I was a) = P(!mat ron | <s> I !was !a) =
P(!mat | <s> I !was !a) ·P(ron | <s> I !was !a !mat)

(2)
Under this practice,
P(mat | I was a) → P(matron | I was a), and
P(mat | I was a) + P(matron | I was a) can exceed 1

Solution: Whitespace-trailing decoding

The probability of the trailing whitespace should be ac-
counted for as part of the word probability instead:

P(mat | I was a) = P(mat ! | <s> I !was !a !) = (3)

P(!mat | <s> I !was !a) · P(! | <s> I !was !a !mat)
P(! | <s> I !was !a)︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸

sum over probabilities of ! tokens

P(matron | I was a) = P(mat ron ! | <s> I !was !a !) =
P(!mat | <s> I !was !a) ·P(ron | <s> I !was !a !mat) ·
P(! | <s> I !was !a !mat ron)

P(! | <s> I !was !a)︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸
sum over probabilities of ! tokens

(4)

Now, P(mat | I was a) and P(matron | I was a) com-
pete for probability, and the sum of all word probabilities
equals 1 (proof in Oh and Schuler [8])

Exp. 1: Revisiting LMs’ garden path effects

After the doctor left, the room turned very dark ...

After the doctor left the room turned very dark ...

LMs severely underpredict the difficulty at turned [4]

Increase in reading time across conditions estimated
with GPT-2 LMs [9], following Huang et al. [4]

cf. Human effect sizes: ↑120 ms, ↑150 ms, ↑65 ms

Exp. 2: Revisiting LMs’ fit to naturalistic RT

After a certain point, deleterious effects of LM size and
training data amount on fit to naturalistic RT [7]

Surprisal from Pythia LMs [1] fit to Natural Stories self-
paced reading time data [3], following Oh and Schuler [7]

Key Takeaways

1 Increased LM size and training data help accurate predictions of low-frequency words. Therefore,
2 Consequence 1: Difference in fit to reading times is the largest on the subset of low-frequency words
3 Consequence 2: Word frequency shows differential fits to reading times depending on baseline surprisal

More in Frequency explains the inverse correlation of large language models’ size, training data amount, and surprisal’s fit to reading times.
Proc. EACL.; Dissociable frequency effects attenuate as large language model surprisal predictors improve. Under review at JML.

Word frequency has a strong influence on LM probabilities

Larger LMs boost probabilities more given the same training data [13], assigning lower surprisal to low-frequency words

This leads to two consequences when modeling reading times using LM surprisal and word frequency

Consequence 1: Difference in errors is the largest on low-frequency words

Surprisal from Pythia LMs [1] fit to five self-paced reading and eye-tracking datasets [10 measures; 2, 3, 5, 6, 12]

Consequence 2: Word frequency compensates for LM surprisal

Surprisal from LMs of different sizes fit to data in 12 languages from the MECO eye-tracking dataset [3 measures; 11]
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