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Surprisal-Based Models of Sentence Processing

• Surprisal theory (Hale, 2001; Levy, 2008) connects a word’s processing difficulty to its 

predictability in context:

difficulty 𝑤𝑖 ∝ − log 𝑃 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)

• Creates a link between psycholinguistic modeling and language modeling

• Studies have compared surprisal estimates from a range of language models 
(e.g., Wilcox et al., 2020; Merkx and Frank, 2021)

• n-gram models

• Recurrent neural networks

• Transformers

• Transformer surprisal shows a strong fit to human reading times
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Transformer Attention vs. Human Memory
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• Transformers’ attention mechanism resembles models of cue-based retrieval 
(Ryu and Lewis, 2021; Oh and Schuler, 2022; Timkey and Linzen, 2023; Yoshida et al., 2025)
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Transformer Attention vs. Human Memory
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• Transformers’ attention mechanism resembles models of cue-based retrieval 
(Ryu and Lewis, 2021; Oh and Schuler, 2022; Timkey and Linzen, 2023; Yoshida et al., 2025)

• But Transformers make other unrealistic assumptions about memory

• Lossless representations

• Long context window (text history)

• Capable of “needle-in-haystack” tasks over long contexts (Gemini Team, 2024)

• This runs contrary to theories positing tight bounds on human memory (Chomsky 

and Miller, 1963; Miller and Isard, 1964; Gibson, 2000; Lewis and Vasishth, 2005)



Recency Bias in Transformers
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• We therefore try adding a recency bias to Transformers

• Shifts some attention to more recent words

• Resembles notions of decay or lossy context found in cognitive models
(Lewis and Vasishth, 2005; Futrell et al., 2020)

• Surprisal estimates are taken from Transformers with and without recency bias

• Reading times are predicted from broad-coverage, naturalistic corpora

• Improved predictions from Transformers with ALiBi recency bias (Press et al., 2022)
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Transformer Architecture
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Scaled Dot-Product Attention
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• Uses query (𝐪), key (𝐤), value (𝐯) word vectors

• Steps when processing word i:

1. Calculate similarity 𝑧𝑖,𝑗 between 𝐪𝑖 and each 𝐤𝑗 , 𝑗 ∈ [1. . 𝑖]

• Scaled dot product: 𝑧𝑖,𝑗 =
1

𝑑
𝐪𝑖

T𝐤𝑗

• 𝑑 is the vector dimension

2. Exponentiate and renormalize to get attention scores

• Attention 𝑖, 𝑗 = 𝜎(

𝑧𝑖,1

…
𝑧𝑖,𝑖

)𝑗 =
𝑒
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3. Combine value vectors based on attention scores

• Used for probabilistic next-word predictions

• Multiple attention heads compute scores in parallel q k v
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Scaled Dot-Product Attention
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• Uses query (𝐪), key (𝐤), value (𝐯) word vectors
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3. Combine value vectors based on attention scores

• Used for probabilistic next-word predictions

• Multiple attention heads compute scores in parallel
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Recency Bias
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• A recency bias can be added to attention scores to upweight recent words

• We test two implementations of recency bias from previous work (de Varda and 

Marelli, 2024; Press et al., 2022)

Raw attention

scores
Recency bias Modified attention

scores

+ =



Recency Bias: de Varda and Marelli (2024)
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• Add a recency bias term 𝐛𝑖 ∈ ℝ𝑖 to the similarity scores prior to renormalization

• Terms in the bias vector follow an exponential pattern: 𝐛𝑖 𝑗 = 𝑒−𝜆(𝑖−𝑗)

• Hyperparameter 𝜆 determines the rate of decay

• Modified attention formulation:

AttentiondVM 𝑖, 𝑗 = 𝜎(𝛼𝐛𝑖 + (1 − 𝛼)

𝑧𝑖,1

…
𝑧𝑖,𝑖

)

• Hyperparameter 𝛼 weights the bias and raw similarity scores

• Following the original study, we set 𝜆 = 82.86 and 𝛼 = 0.37

Recency bias

Query-key

similarity scores



Recency Bias: ALiBi (Press et al., 2022)
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• Attention with Linear Biases

• Originally developed as a method for input length extrapolation

• Uses a linear recency bias term: 𝐛𝑖
′ ∈ ℝ𝑖 , where 𝐛𝑖

′ 𝑗 = 𝑚 ⋅ (𝑗 − 𝑖)

• Modified attention formulation:

AttentionALiBi 𝑖, 𝑗 = 𝜎(𝐛𝑖
′ +

𝑧𝑖,1

…
𝑧𝑖,𝑖

)

• The hyperparameter 𝑚 determines the rate of decay

• Press et al. use a different decay rate for each attention head in a layer

Query-key similarity scores

Recency bias
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Experiments: Reading Time Corpora
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• Reading times come from a set of broad-coverage psycholinguistic corpora

• Eye-tracking corpora included scan path, first-pass, and go-past durations

• Corpora were partitioned into fit, exploratory, and held-out partitions

• Fit partition (50% of data points) used to fit regression models

• Exploratory partition (25%) used for evaluation of regression models

• Held-out partition (25%) used for statistical significance testing

Eye-tracking corpora: 

• UCL (Frank et al., 2013)

• GECO (Cop et al., 2017)

• Dundee (Kennedy et al., 2003)

• Provo (Luke and Christianson, 2018)

Self-paced reading corpora: 

• Brown (Smith and Levy, 2013)

• Natural Stories (Futrell et al., 2021)

• UCL (Frank et al., 2013)



Experiments: Language Models
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• The Transformers used in the experiments were based on Pythia models 
(Biderman et al., 2023)

• Context window of 2048 tokens (word pieces)

• Trained from scratch on the first 1000 batches (~2B tokens) of the Pile (Gao et 

al., 2020)

• 2 Transformer layers with 4 attention heads each (~27M parameters)

• Model settings were optimal values from a previous reading time study 
(Oh and Schuler, 2023)



Experiments: Regression Modeling
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• Reading times predicted with linear mixed-effects regression models (Bates et al., 2015) 

• Regression models included baseline predictors as well as Transformer surprisal

• Spillover predictors from the previous word 𝑖 − 1 were included for surprisal 

• Evaluation metric: increase in log likelihood (∆LogLik)

• Compares regression models with and without surprisal predictors

• Aggregated over all corpora



Experiment 1: De Varda and Marelli (2024) Replication
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• We do not replicate the improvement reported by dV&M

• We predict per-subject reading times; dV&M predict averages

• Like dV&M, we see variable results across individual corpora



Experiment 2: Recency Bias at Training and Inference
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• Following Press et al. (2022), recency bias used throughout

• Still no ∆LogLik improvement from the de Varda and Marelli bias

• Significant improvement from ALiBi (𝑝 < 0.001)

no recency bias



Experiment 3: Uniform ALiBi Decay Rate
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• ALiBi (Press et al., 2022) uses separate decay rates across attention heads

• For four attention heads: [1/4, 1/16, 1/64, 1/256]

• Cognitive models (e.g., Lewis and Vasishth, 2005) typically use a single decay rate

• Experiment 3 accordingly simplified ALiBi to only use one decay rate

no recency bias



Experiment 4: Analysis of ALiBi Attention Heads
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• We hypothesize that mixed decay rates enable tracking different dependencies

• Individual attention heads in a Transformer with ALiBi were tested for three 

types of semantic dependencies:

• First arguments (e.g., The dog bit the man)

• Second arguments (e.g., The man was bitten by the dog)

• Coreference (e.g., The dog chased its tail)



Experiment 4: Analysis of ALiBi Attention Heads
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• Argument and coreference dependencies were identified in Natural Stories 
(Futrell et al., 2021)

• Dependencies were extracted from existing annotations (Shain et al., 2018)

• Mean attention score was calculated between head and dependent word

• Separately tested each attention head in each layer (𝐻 = 4, 𝐿 = 2)



Experiment 4: Results
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• Arguments are tracked most by attention heads with faster decay (1/4)

• Coreference is tracked by heads with slower decay (1/16)

• May reflect longer dependency distance for coreference
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Discussion
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• Despite the similarity between Transformer attention and cue-based retrieval, 

Transformers makes other unrealistic assumptions about memory

• Adding a recency bias to address this improves reading-time predictions

• Specifics matter:

• ALiBi improves predictions; de Varda and Marelli (2024) bias does not

• Only adding recency bias during inference does not work

• Mixed decay rates help; uniform decay does not



Discussion
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• What to make of the mixed decay rates in ALiBi?

• Necessary for improved reading time predictions

• Contrasts with cognitive models using one decay parameter (e.g., Lewis and 

Vasishth, 2005)

• Might enable tracking different dependencies, e.g., nonlocal vs. local

• Might reflect different retrieval operations for different dependencies (Yoshida et 

al., 2025)

• Mixed decay rates might approximate interference during comprehension

• Starting point for broad-coverage models relating memory and expectation



Conclusion
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Thanks for listening!

This material is based upon work supported by the National Science Foundation under Grant Number 

1816891. Any opinions, findings, and conclusions or recommendations expressed in this material are those of 

the authors and do not necessarily reflect the views of the National Science Foundation.
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