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Word-by-word conditional probabilities from Transformer-based language models (LMs) are in-
creasingly being used to model the incremental processing difficulty of human readers [9, 12].
However, due to the way many contemporary LMs tokenize raw strings into tokens that can be
processed, there is a confound in calculating word probabilities correctly that has been overlooked.

To allow LMs to flexibly handle unseen word forms and to keep the vocabulary size manage-
able, it has become a standard practice in language modeling to use ‘subword’ vocabularies [11].
Such vocabularies are built based on corpus statistics such that they contain frequent character se-
quences (which may or may not correspond to words) as independent tokens. A common design
choice in this process is to prepend the whitespace character to tokens, such that tokens have
leading whitespaces. Consider how the GPT-2 English LM [10] tokenizes the following minimal
pair of sentences:
(1) a. I ␣was ␣a ␣mat ron ␣in ␣France .

b. I ␣was ␣a ␣mat ␣in ␣France .

Under this tokenization, a common way to calculate P(mat | I was a) and P(matron | I was a)
is by calculating P(␣mat | I ␣was ␣a) and P(␣mat ron | I ␣was ␣a) respectively. However, as
P(␣mat ron | I ␣was ␣a) = P(␣mat | I ␣was ␣a) · P(ron | I ␣was ␣a ␣mat), the sum of two word
probabilities P(mat | I was a)+P(matron | I was a) can exceed one, which would violate the prob-
ability axiom that the probability of all outcomes equals one [6]. We propose a simple fix for calcu-
lating these word probabilities instead as P(mat ␣ | I ␣was ␣a ␣) and P(mat ron ␣ | I ␣was ␣a ␣)
by reaccounting the probabilities of whitespaces. This correction results in word probabilities that
sum to one and are more congruent with self-paced reading and eye-tracking paradigms where
human subjects directly observe upcoming word boundaries.

We subsequently evaluated the impact of this confound on two previously reported psycholin-
guistic modeling experiments. The first experiment re-evaluated surprisal-based estimates of
garden-path effects in English transitive/intransitive sentences [7, 3] from GPT-2 LMs [10], using
the data and following the procedures of Huang et al. [4]. First, linear mixed-effects (LME) models
were fit to self-paced reading times of filler items, which were used to generate predicted reading
times for the critical word and two spillover words over 24 items. The difference in predicted read-
ing times was then estimated through another LME model that includes an ambiguity condition as
a main predictor:
(2) a. Ambiguous condition: After the doctor left the room turned very dark ...

b. Unambiguous condition: After the doctor left, the room turned very dark ...
Figure 1 shows that the correction lowers the estimatedmagnitude of garden-path effects in the first
and second spillover regions. Such lower estimates suggest that the underestimation of human-
like garden-path effects by LM surprisal is more severe than previously reported.

The second experiment re-evaluated the fit of surprisal from Pythia English LMs [1] to natural-
istic reading times of the English Natural Stories and Dundee corpora [2, 5], following the proce-
dures of Oh and Schuler [8]. On each dataset, LME models including LM surprisal and standard
baseline predictors were fit to approximately half of the data points, whose log-likelihoods were
compared against that of the baseline LME model without LM surprisal to calculate the increase
due to surprisal. Figure 2 shows that the correction results in poorer fits to naturalistic reading
times, especially for LMs that have seen around 256 to 1,000 batches of training data. Taken to-
gether, these results suggest that part of the processing difficulty predicted by LM surprisal was
spuriously due to the LMs’ implicit prediction of word boundaries.
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LME Formula

Filler [4]:
RT ∼ surp + surp_prev + surp_prev2 + s(length) +

freq + freq_prev + freq_prev2 + s(index) +
(1 | subject) + (1 | item)

Predicted RT [4]:
pred_RT ∼ condition + (1 | subject) + (1 | item)

Natural Stories [2]:
log(RT) ∼ surp + length + index +

(surp + length + index + 1 | subject) +
(1 | subject:sentid)

Dundee [5]:
log(GPD) ∼ surp + length + index + slength + pfix +

(surp + length + index + slength + pfix +
1 | subject) + (1 | sentid)

Table 1: LME formulae used in the experiments.
GPD: Go-past duration, index: position of the word
within the sentence, slength: saccade length, pfix:
whether the previous word was fixated, sentid: in-
dex of the sentence within each corpus. On the Nat-
ural Stories and Dundee corpora, all predictors were
z-transformed.

Figure 1: Estimated effects of interest at each re-
gion for the transitive/intransitive garden-path con-
struction before and after probability correction. The
difference in estimated effects of interest is signif-
icant at p < 0.05 level for all comparisons in the
first and second spillover regions, except for GPT-2
Large in the second spillover region.

Figure 2: Increase in LME model log-likelihood due to including surprisal from Pythia LMs calculated with
probability correction (top) and the resulting change in LME model log-likelihood (bottom) on the Natural
Stories Corpus (left) and the Dundee Corpus (right).
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