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About me

I am a Faculty Fellow (≈ postdoc) in Data Science

● Research: You will hear about today
● Teaching: DS-GA 1015, Text as Data

I have email: oh.b@nyu.edu



What is (computational) 
psycholinguistics?

P A R T   0 1



I landed in JFK and took a …

You (and your brain) were probably able to:

● Build some mental representation without seeing the end of sentence
● Do so incrementally without much conscious effort
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Psycholinguistics

● Psycholinguistics is concerned with how we comprehend and produce 
language

● Psycholinguistics is concerned with how language is represented and 
processed in the mind
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Example research questions

● Speech perception: How do infants segment acoustic input into words?

● Morphology: How are different inflected forms represented in the brain?

● Semantics: How is meaning represented in the brain?
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The subfield I’m into (sentence processing)

Why are some words or sentences more difficult to process than others?

● The cat the dog licked ran away
● The cat the dog the rat chased licked ran away

● The fact that the employee who the manager hired stole office supplies 
worried the executive

● The executive who the fact that the employee stole office supplies worried 
hired the manager
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What kind of data is collected and analyzed?

Usually some form of response to stimuli sentences in an experiment

● Measurement of reaction time to some linguistic task
● Measurement of reading times
● Measurement of brain response



Lexical decision task:

Decide whether a word is 
real or made up as 
quickly as you can

The time taken to 
respond (reaction time) 
is measured



Self-paced reading (SPR):

Press a key on the keyboard to 
reveal the next word

Word-by-word reading times are 
measured as the time taken 
between keystrokes

Cannot return to earlier words



Eye-tracking (ET):

Wear an eye-tracker and read some 
text as you would naturally

Can return to earlier words

The eye movement data has to be 
post-processed to derive 
word-by-word reading times



● Some words are skipped during reading
● Eye-tracking allows re-reading (regressions; 6 in example)
● First-pass duration: Time taken between entering a word region for the first time 

from the left and leaving it to either left or right (4+5 in example)
● Go-past duration: Time taken between entering a word region for the first time 

from the left and leaving it to the right (4+5+6+7 in example)



Brain responses:

Usually with a listening task, 
difficult to collect

EEG, MEG, fMRI most common in 
psycholinguistic studies

Complementary advantage in 
temporal and spatial resolution
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What kind of data is collected and analyzed?

The core assumptions of data analysis are:

● The time taken to react to a task or read the word reflects processing 
difficulty (difficult words take longer to read)

● Similarly, the change in brain measures also reflects processing difficulty 
(difficult words cause spike/dip in electrical activity, increase in blood flow)



16

So, what is computational psycholinguistics?

Computational psycholinguistics aims to develop computational models of the 
cognitive mechanism underlying language comprehension

The models should ideally:
● Generate concrete predictions for the phenomena of interest
● Accurately capture the trend in the experimental data
● Embody a linking hypothesis between the underlying mechanism and the 

observed behavior
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So, what is computational psycholinguistics?

Computational psycholinguistics aims to develop computational models of the 
cognitive mechanism underlying language comprehension

The remainder of this lecture will be about evaluating Transformer language models 
(LMs) as computational models of predictive processing

1) The theory: How can LMs be viewed as a model of language processing?
2) The results: In what aspects are Transformer LMs ‘superhuman?’



The theory: LMs as models 
of predictive processing

P A R T   0 2
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The shared principle of prediction (humans)

Prediction based on diverse contextual cues affect human language processing

Syntactic
● Jamie was clearly intimidated…

Phonological
● Terry ate an…
● Terry ate a…

Semantic & world knowledge
● The children went outside to…
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The shared principle of prediction (humans)

The more predictable taxi is easier to process than camel

Decades of psycholinguistics research have confirmed this
● Predictable words show distinct EEG profiles (Kutas & Hillyard, 1980)

● Predictable words are skipped more in eye-tracking data (Ehrlich & Rayner, 1981)

I landed in JFK and took a
taxi

camel



21

The shared principle of prediction (LMs)

I landed in JFK and took a

wt P(wt|w1..t-1)

taxi 0.1174

flight 0.0635

... ...

camel 3.8×10-5

LMs learn nontrivial linguistic structure by simply predicting the next word
(Futrell & Mahowald, 2025; Linzen & Baroni, 2021; Mahowald et al., 2024)
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The shared principle of prediction (LMs)

NLP models used to be limited in scope

Due to recent advances, a lot of NLP in 2025 is pushing P(wt|w1..t-1) to its limit
● Vast increase in model/data scale
● In-context learning/X-of-thought prompting
● Reinforcement learning from human feedback

Although with different goals, there is room to be creative with P(wt|w1..t-1) for 
computational psycholinguistics as well
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Theoretical link between humans and LMs
Surprisal Theory (Hale, 2001; Levy, 2008): A word’s difficulty is its surprisal in context

S(wt) := —log2P(wt|Context) ≈ —log2P(wt|w1..t-1)
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Theoretical link between humans and LMs
Surprisal Theory (Hale, 2001; Levy, 2008): A word’s difficulty is its surprisal in context

Reading time of wt ∝ —log2P(wt|w1..t-1)

I landed in JFK and took a
taxi

camel
Reading time of taxi ∝ —log2P(taxi | I landed in JFK and took a)

Reading time of camel ∝ —log2P(camel | I landed in JFK and took a)
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Modeling methodology
wt I landed in JFK

Reading time 709 ms 847 ms 766 ms 886 ms

SLM1(wt) 4.95 6.40 1.32 6.04

SLM2(wt) 3.53 5.73 0.69 4.14

SLM3(wt) 3.50 5.13 0.59 3.63

● Regression modeling conducted to fit surprisal (predictor) to RT (response)
● We can then evaluate which S(wt) fits reading times best
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Some historical lore

A lot of sentence processing research has to do with syntactic structure

As such, generative, incremental syntactic parsers (joint distribution over words 
and parses) have been used to study the influence of syntactic prediction
● Marginalize over parses to derive surprisal
● If there’s a big change in the likely parse as a result of observing the next 

word, its surprisal goes up



Example from van 
Schijndel et al. (2013)

What is shown in (B) is 
called left-corner parsing

Maintain e.g. 2k parses 
on the beam, marginalize 
over them at each 
timestep to calculate 
surprisal

https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12034
https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12034


The results: Where LMs 
show ‘superhuman’ language 

processing

P A R T   0 2



People thought that language processing is driven by accurate prediction

More 
accurate

Less 
accurate

Goodkind and Bicknell (2018)
Better fit 

to RT

Poorer fit 
to RT

Wilcox et al. (2020)

More 
accurate

Less 
accurate

https://aclanthology.org/W18-0102/
https://escholarship.org/uc/item/738338tm


This relationship completely breaks down with more contemporary* LMs

More 
accurate

Less 
accurate

Oh et al. (2022)
Better fit 

to RT

Poorer fit 
to RT

1. Does this trend replicate with 
other Transformer LMs?

2. If so, are there linguistic 
factors that drive this trend?

Why does surprisal from larger 
Transformer-based language 
models provide a poorer fit to 
human reading times?

https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.777963/full
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
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Methods: Replication with more LMs

● Regression models fit to Natural Stories and 
Dundee datasets

● Baseline predictors: word length/position, 
saccade length, previous word fixated

● Predictors of interest: LM surprisal

● Evaluation: Δlog-likelihood (ΔLL)



Larger LMs provide poorer predictors of reading times

Better fit 
to RT

Poorer fit 
to RT More 

accurate, 
larger

Less 
accurate, 
smaller

More 
accurate, 

larger

Less 
accurate, 
smaller



What linguistic factors drive this trend?
● Text annotated with word-level and syntactic properties
● Top 5 subsets with the largest difference in MSE between models identified

Poorer fit 
to RT

Better fit 
to RT



The effect of LM size seems to be driven by open-class words like named entities



The effect of LM size seems to be driven by open-class words like named entities



The effect of LM size seems to be driven by open-class words like named entities



The effect of LM size seems to be driven by open-class words like named entities



The effect of LM size seems to be driven by open-class words like named entities



Larger LMs underpredict reading times of named entity terms



Larger LMs underpredict reading times of named entity terms
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Some examples

Large LMs can predict the following words with very high probability:

(In a passage about the Roswell UFO incident)
… In January nineteen ninety-seven, Karl ________, one of the more prominent 
pro-UFO researchers, …

(In a passage about the Tulip mania)
… At one point twelve acres of land were offered for a Semper ________ bulb. …
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Recap (1)

● Surprisal from larger LMs show strictly poorer fits to human reading times

● Effect mostly driven by underpredictions of reading times by LM surprisal

● In NLP terms, LMs seem to hold much more “parametric knowledge” 
compared to an average reader

● This is desirable for NLP applications, but does make them ‘superhuman’



Still conflicting results about next-word prediction accuracy

Better fit 
to RT

Poorer fit 
to RT

Wilcox et al. (2020)

More 
accurate

Less 
accurate

Better fit 
to RT

Poorer fit 
to RT More 

accurate, 
larger

Less 
accurate, 
smaller

Oh and Schuler (2023)

https://escholarship.org/uc/item/738338tm
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
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The difference in models across studies

Big difference in terms of both LM size and training data amount
● Model size: probably small vs. 66B parameters
● Training data: 42M tokens vs. 8.7B tokens

The relationship probably reverses somewhere in between, but there is a really 
big middle ground to cover



Transformer-based language model surprisal predicts human reading times best 
with about two billion training tokens

https://aclanthology.org/2023.findings-emnlp.128/
https://aclanthology.org/2023.findings-emnlp.128/
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Covering the middle ground (training data)

● Regression models fit to Natural Stories and 
Dundee datasets, ΔLL calculated

● Predictors of interest: LM surprisal

● Trained on identical batches of 1024 × 2048 
(~2M) tokens

● Intermediate checkpoints evaluated



Sweet spot at around two billion tokens

Better fit 
to RT

Poorer fit 
to RT

Less 
data

More 
data



Sweet spot at around two billion tokens

Better fit 
to RT

Poorer fit 
to RT

Less 
data

More 
data



The two studies captured two different regimes

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate



The two studies captured two different regimes

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate



The two studies captured two different regimes

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate
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Covering the middle ground (model size)

● (Much) smaller LMs trained following the 
procedures of Pythia LMs

● LMs evaluated after {1, 2, 4, ..., 512, 1000, 
1500, ..., 10000} training steps



Smaller LMs converge earlier

Better fit 
to RT

Poorer fit 
to RT

Less 
data

More 
data



The two different regimes, again

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate



The two different regimes, again

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate



The two different regimes, again

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate
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Recap (2)

● Fit to reading times starts to degrade after about 2B tokens of training data

● Strong interaction between LM size and training data amount after the peak

● Consolidates conflicting results about LM perplexity and fit to reading times
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More recently (1) Reading times are measured in words, 
but LMs predict over subword tokens

Manipulated the tokenizer and trained 
Mamba-2 models with different 
vocabulary sizes

The impact of token granularity on the 
predictive power of language model 
surprisal

https://arxiv.org/abs/2412.11940
https://arxiv.org/abs/2412.11940
https://arxiv.org/abs/2412.11940


Again, some sweet spot in the middle?

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate

The influence of the tokenizer is 
more notable for smaller LMs

A vocabulary size of 8k is a lot 
smaller than what is often used
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More recently (2)

● Have the LMs already seen the text corpora used to collect reading times 
from human subjects?

● Does this explain why larger models make more ‘superhuman’ predictions?

● Leakage detection using longest token n-gram overlap

Assessing the leakage of naturalistic reading time corpora in language model 
pre-training datasets (not available online yet)



If the passage is completely leaked in training data, the overlap length should be 
the same as the passage length (yellow line)

Inevitably some overlap, but benign on most datasets

Pythia training 
data (300B)

GPT-2 training 
data (8.7B)



Trained on 
‘clean’ data

Fine-tuned on 
‘test’ data

The effects of model size hold even when trained on very ‘clean’ data

But larger models degrade quicker if directly trained on the reading time corpora

LM sizes
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More recently (3)

What are some differences between 
the two neural networks?

One that’s relevant for language 
processing: Transformers have 
lossless access to previous tokens
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More recently (3) You can see this through how well  
Transformers are able to ‘copy’ earlier 
tokens of the input sequence

Figure shows surprisal at 
A B [some intervening tokens] A → B

All models learn to copy by relying on 
bigram patterns early in training

This is thought to be achieved through 
induction heads (Olsson et al. 2022)

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
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More recently (3) Transformer LMs (even Pythia 
70M!) predict repeated text 
with near-zero surprisal

“Surprisal collapse” (Gruteke Klein 

et al. 2024): surprisal is unable to 
capture reading times during 
repeated reading

Second reading 
of passage

First reading
of passage

Predicted 
slowdown in RT 
(milliseconds)

https://aclanthology.org/2024.conll-1.17/
https://aclanthology.org/2024.conll-1.17/
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More recently (3) We can bake in a recency bias by 
intervening on the attention weights

This has the effect of downweighting 
earlier tokens in the input context

Linear recency bias during training 
improves Transformers’ fit to reading 
times

https://aclanthology.org/2025.coling-main.517.pdf
https://aclanthology.org/2025.coling-main.517.pdf
https://aclanthology.org/2025.coling-main.517.pdf


Recency bias helps, under specific circumstances

Better fit 
to RT

Poorer fit 
to RT

More 
accurate

Less 
accurate

Recency bias needs to be 
incorporated both during training 
and inference

Different heads need to have 
different decay rates
● Seems to help track 

different dependencies
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TL;DR

Computational psycholinguistics aims to develop computational models of the 
cognitive mechanism underlying language comprehension

LMs can be evaluated as models of predictive processing under surprisal theory 
by using surprisal to model reading times

Modern Transformer LMs seem to be ‘superhuman’ for two reasons
● During training: Models learn too much parametric knowledge
● During inference: Transformers tend to copy earlier input tokens
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In the works

Applying “model editing” techniques for the completely opposite purpose

Using LM surprisal to model reading times in Chinese
● People have to perform word segmentation implicitly

Tweaking state space models to implement human-like limitations in memory
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Thanks for listening!
oh.b@nyu.edu


