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What is (computational)
psycholinguistics?



| landed in JFK and took a ...

You (and your brain) were probably able to:

e Build some mental representation without seeing the end of sentence
e Do soincrementally without much conscious effort



Psycholinguistics

e Psycholinguistics is concerned with how we comprehend and produce
language

e Psycholinguistics is concerned with how language is represented and
processed in the mind
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Propagation across levels

Acoustic Signal
Word Segmentation

L exical Access

Semantic Interpretation

Input over time

Meaning



Example research questions

e Speech perception: How do infants segment acoustic input into words?
e Morphology: How are different inflected forms represented in the brain?

e Semantics: How is meaning represented in the brain?

A NYU



The subfield I'm into (sentence processing)

Why are some words or sentences more difficult to process than others?

e The cat the dog licked ran away
e The cat the dog the rat chased licked ran away

e The fact that the employee who the manager hired stole office supplies
worried the executive

e The executive who the fact that the employee stole office supplies worried
hired the manager

A NYU



What kind of data is collected and analyzed?

Usually some form of response to stimuli sentences in an experiment
e Measurement of reaction time to some linguistic task

e Measurement of reading times
e Measurement of brain response

A NYU



Lexical-Decision Task

DOWT

Is the word shown on screen a
real word or is it made up?

When Non-word

Lexical decision task:

Decide whether a word is
real or made up as
quickly as you can

The time taken to
respond (reaction time)
is measured



John

weme OpeNed === w=s wees,

Self-paced reading (SPR):

Press a key on the keyboard to
reveal the next word

Word-by-word reading times are
measured as the time taken

between keystrokes

Cannot return to earlier words



Eye-tracking (ET):

Wear an eye-tracker and read some
text as you would naturally

Can return to earlier words
The eye movement data has to be

post-processed to derive
word-by-word reading times



Regression Path

Regression

7 9

The k“ght attackedfhe j dmll’l o his donkey

N B e

First-Fix‘ation Total Time
Some words are skipped during reading
Eye-tracking allows re-reading (regressions; 6 in example)
First-pass duration: Time taken between entering a word region for the first time
from the left and leaving it to either left or right (4+5 in example)
Go-past duration: Time taken between entering a word region for the first time
from the left and leaving it to the right (4+5+6+7 in example)



Modality | Signal type | Temporal Spatial Method | Portability
resolution | resolution type
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What kind of data is collected and analyzed?

The core assumptions of data analysis are:

e The time taken to react to a task or read the word reflects processing
difficulty (difficult words take longer to read)

e Similarly, the change in brain measures also reflects processing difficulty
(difficult words cause spike/dip in electrical activity, increase in blood flow)
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So, what is computational psycholinguistics?

Computational psycholinguistics aims to develop computational models of the
cognitive mechanism underlying language comprehension

The models should ideally:
e Generate concrete predictions for the phenomena of interest
e Accurately capture the trend in the experimental data
e Embody a linking hypothesis between the underlying mechanism and the
observed behavior

ANYU s



So, what is computational psycholinguistics?

Computational psycholinguistics aims to develop computational models of the
cognitive mechanism underlying language comprehension

The remainder of this lecture will be about evaluating Transformer language models
(LMs) as computational models of predictive processing

1) The theory: How can LMs be viewed as a model of language processing?
2) The results: In what aspects are Transformer LMs ‘superhuman?’

A NYU "
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The theory: LMs as models
of predictive processing



The shared principle of prediction (humans)

Prediction based on diverse contextual cues affect human language processing

Syntactic

e Jamie was clearly intimidated...
Phonological

e TJerry ate an...

e Jerryatea..
Semantic & world knowledge

e The children went outside to...

A NYU
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The shared principle of prediction (humans)

taxi
| landed in JFK and took a <
camel

The more predictable taxi is easier to process than camel

Decades of psycholinguistics research have confirmed this
e Predictable words show distinct EEG profiles (Kutas & Hillyard, 1980)
e Predictable words are skipped more in eye-tracking data (Ehrlich & Rayner, 1981)

ANYU 20



The shared principle of prediction (LMs)

Wt P(th W7..t-7)
—_— taxi 0.1174
flight 0.0635
| landed in JFK and took a
camel 3.8x107°

LMs learn nontrivial linguistic structure by simply predicting the next word
(Futrell & Mahowald, 2025; Linzen & Baroni, 2021; Mahowald et al., 2024)
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The shared principle of prediction (LMs)

NLP models used to be limited in scope

Due to recent advances, a lot of NLP in 2025 is pushing P(w, [ w
e Vastincrease in model/data scale
e In-context learning/X-of-thought prompting
e Reinforcement learning from human feedback

Although with different goals, there is room to be creative with P(w, | w

computational psycholinguistics as well

A NYU
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Theoretical link between humans and LMs

Surprisal Theory (Hale, 2001; Levy, 2008): A word’s difficulty is its surprisal in context

S(w,) := —1og2P(wt|Context) ~ —log P(w w, ., )
8-.
Ae-
[2]
5
34
S
)
2-
ANYU L - - - '
| 0.00 0.25 0.50 0.75 1.00

Probability
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Theoretical link between humans and LMs

Surprisal Theory (Hale, 2001; Levy, 2008): A word’s difficulty is its surprisal in context

Reading time of w, oc —log P(w, |w )

7..t-17

taxi
| landed in JFK and took a <
camel

Reading time of taxi oc —log P(taxi | I landed in JFK and took a)
Reading time of camel o< -1og P(camel | | landed in JFK and took a)

NYU 2



Modeling methodology

w || landed in JFK
Reading time | 709 ms 847 ms 766 ms 886 ms
S,(w)|4.95 6.40 1.32 6.04
S,,,(w,) | 3.53 5.73 0.69 4.14
S,(W,) | 3.50 5.13 0.59 3.63

e Regression modeling conducted to fit surprisal (predictor) to RT (response)
e We can then evaluate which s(w)) fits reading times best

NYU



Some historical lore

A lot of sentence processing research has to do with syntactic structure

As such, generative, incremental syntactic parsers (joint distribution over words
and parses) have been used to study the influence of syntactic prediction
e Marginalize over parses to derive surprisal
e If there's a big change in the likely parse as a result of observing the next
word, its surprisal goes up

A NYU
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/\
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D N \Y% NP
| | l g
the studio bought D N
/\ /\
NP G A N
D N s distribution  rights
A |
NP G publisher
T |
D N S
| |
the  book

Example from van
Schijndel et al. (2013)

What is shown in (B) is
called left-corner parsing

Maintain e.g. 2k parses
on the beam, marginalize
over them at each
timestep to calculate
surprisal


https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12034
https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12034
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The results: Where LMs
show ‘superhuman’ language
processing



People thought that language processing is driven by accurate prediction

Goodkind and Bicknell (2018)
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https://aclanthology.org/W18-0102/
https://escholarship.org/uc/item/738338tm

This relationship completely breaks down with more contemporary* LMs

Oh et al. (2022) 1 Does this trend replicate with
. Does this trend replicate wi
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https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.777963/full
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548

Methods: Replication with more LMs

e Regression models fit to Natural Stories and
Dundee datasets

e Baseline predictors: word length/position,
saccade length, previous word fixated

e Predictors of interest: LM surprisal

e Evaluation: Alog-likelihood (ALL)

ANYU

Model size
Madel (#Parameters)
GPT-2 Small ~117M
GPT-2 Medium ~345M
GPT-2 Large ~T74M
GPT-2 XL ~1.6B
GPT-Neo 125M ~125M
GPT-Neo 1.3B ~1.3B
GPT-Neo 2.7B ~2.7B
GPT-J 6B ~6B
GPT-NeoX 20B ~20B
OPT 125M ~125M
OPT 350M ~350M
OPT 1.3B ~1.3B
OPT 2.7B ~2.7B
OPT 6.7B ~6.7B
OPT 13B ~13B
OPT 30B ~30B
OPT 66B ~66B
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Larger LMs provide poorer predictors of reading times
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What linguistic factors drive this trend?
e Text annotated with word-level and syntactic properties
e Top 5 subsets with the largest difference in MSE between models identified
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The effect of LM size seems to be driven by open-class words like named entities

Nouns preceding REL (n=8059)

Named entities (n=8788)
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The effect of LM size seems to be driven by open-class words like named entities

Natural Stories SPR
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The effect of LM size seems to be driven by open-class words like named entities

Named entities (n=9259)
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The effect of LM size seems to be driven by open-class words like named entities
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The effect of LM size seems to be driven by open-class words like named entities
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Larger LMs underpredict reading times of named entity terms

Natural Stories SPR

SSE
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Larger LMs underpredict reading times of named entity terms

SSE
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Some examples

Large LMs can predict the following words with very high probability:

(In a passage about the Roswell UFO incident)
.. In January nineteen ninety-seven, Karl
pro-UFO researchers, ...

(In a passage about the Tulip mania)
... At one point twelve acres of land were offered for a Semper

A NYU

, one of the more prominent

bulb. ...
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Recap (1)

e Surprisal from larger LMs show strictly poorer fits to human reading times
e Effect mostly driven by underpredictions of reading times by LM surprisal

e In NLP terms, LMs seem to hold much more “parametric knowledge”
compared to an average reader

e This is desirable for NLP applications, but does make them ‘superhuman’

A NYU %



Still conflicting results about next-word prediction accuracy
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https://escholarship.org/uc/item/738338tm
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00548

The difference in models across studies

Big difference in terms of both LM size and training data amount
e Model size: probably small vs. 66B parameters
e Training data: 42M tokens vs. 8.7B tokens

The relationship probably reverses somewhere in between, but there is a really
big middle ground to cover

A NYU
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¢ Pythia: Interpreting Transformers Across Time and Scale

This repository is for EleutherAl's project Pythia which combines interpretability analysis and scaling laws to understand
how knowledge develops and evolves during training in autoregressive transformers. For detailed info on the models,
their training, and their properties, please see our paper

The Pythia suite was developed with the explicit purpose of enabling research in interpretability, learning dynamics, and
ethics and transparency for which existing model suites were inadequate. The key features of the Pythia suite are:

1. All models, data, and code used in the paper are publicly released, enabling full reproducibility of results. All results
in our paper have been independently verified by at least one other lab.

2. All models feature 154 checkpoints saved throughout training, enabling the study of learning dynamics of LLMs.

3. All models were trained on the same data in the same order, enabling researchers to explore causal interventions on
the training process.

Transformer-based language model surprisal predicts human reading times best
with about two billion training tokens



https://aclanthology.org/2023.findings-emnlp.128/
https://aclanthology.org/2023.findings-emnlp.128/

Covering the middle ground (training data)

e Regression models fit to Natural Stories and
Dundee datasets, ALL calculated

e Predictors of interest: LM surprisal

e Trained on identical batches of 1024 x 2048
(~2M) tokens

e Intermediate checkpoints evaluated

A NYU

Model size
Model (#Parameters)
Pythia 70M ~70M
Pythia 160M ~160M
Pythia 410M ~410M
Pythia 1B ~1B
Pythia 1.4B ~1.4B
Pythia 2.8B ~2.8B
Pythia 6.9B ~6.9B
Pythia 12B ~12B
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Sweet spot at around two billion tokens
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Sweet spot at around two billion tokens
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The two studies captured two different regimes
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The two studies captured two different regimes
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The two studies captured two different regimes
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Covering the middle ground (model size)

e (Much) smaller LMs trained following the
procedures of Pythia LMs

e |Ms evaluated after{1, 2, 4, ..., 512, 1000,
1500, ..., 10000} training steps

A NYU

Model size
Megel (#Parameters)
Repro 1-1-64 ~6M
Repro 1-2-128 ~13M
Repro 2-2-128 ~13M
Repro 2-3-192 ~20M
Repro 2-4-256 ~27TM
Repro 3-4-256 ~28M
Repro 4-6-384 ~46M
Repro 6-8-512 ~70M
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Smaller LMs converge earlier
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The two different regimes, again
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The two different regimes, again
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The two different regimes, again
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Recap (2)

e Fittoreading times starts to degrade after about 2B tokens of training data
e Strong interaction between LM size and training data amount after the peak

e Consolidates conflicting results about LM perplexity and fit to reading times

ANYU
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More recently (1)

‘If you were to journey’

Finer granularity, more character-like (|V| = 256)
= 0 il = 0 HE EEEN .| 0 DEEEJ§

Coarser granularity, more word-like (|V| = 128000)
_If _you _were _to _journey

Figure 1: Smaller subword vocabulary sizes result in
longer sequences of finer-granularity tokens that are
more character-like (top), and larger vocabulary sizes re-
sult in shorter sequences of coarser-granularity tokens
that are more word-like (bottom).

ANYU

Reading times are measured in words,
but LMs predict over subword tokens

Manipulated the tokenizer and trained
Mamba-2 models with different
vocabulary sizes

The impact of token granularity on the
predictive power of lanquage model

surprisal
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Again, some sweet spot in the middle?

Bettel’ ﬁ-t ® Small A Large W
Medium @ Average
to RT B
¥
A
2900 A
8k %
| 28501 = ¢ ¥
3 Wy ¥
& 3@‘1@szk %
2]1 2800 A %;ﬁ L ~2§6%(
5
2750 A %%(
 / 3pgk & A«
Poorer fit  2700{ s e ¥ L
to RT £ e W ¢
2650 1138«
2%0 2;5 zéO 2é5 2é0 2§I35
Perplexity
More ,  Less
accurate accurate

The influence of the tokenizer is
more notable for smaller LMs

A vocabulary size of 8k is a lot
smaller than what is often used



More recently (2)

e Have the LMs already seen the text corpora used to collect reading times
from human subjects?

e Does this explain why larger models make more ‘superhuman’ predictions?
e |eakage detection using longest token n-gram overlap

Assessing the leakage of naturalistic reading time corpora in language model
pre-training datasets (not available online yet)

A NYU
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Pythia training
data (300B)

GPT-2 training
data (8.7B)

If the passage is completely leaked in training data, the overlap length should be
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The effects of model size hold even when trained on very ‘clean’ data

But larger models degrade quicker if directly trained on the reading time corpora



More recently (3)

Softmax

|

[BOS] Great movie [EOS]

DI What are some differences between

j the two neural networks?

One that's relevant for language

h©
-
(" DECODER
( Feed Forward Neural Network
Masked Self-Attention
18%
[TTT]
[ DECODER J
AR

) processing: Transformers have
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robot
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18848 ¢
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6 7 8
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1024

lossless access to previous tokens
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Average Surprisal

More recently (3)

Condition 3 (W nl; n=1973)
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You can see this through how well
Transformers are able to ‘copy’ earlier
tokens of the input sequence

Figure shows surprisal at
A B [some intervening tokens] A > B

All models learn to copy by relying on
bigram patterns early in training

This is thought to be achieved through
induction heads (Olsson et al. 2022)
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https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

More recently (3)

First reading
of passage

Second reading
of passage

Predicted .
slowdown in RT
(milliseconds)

—-10+

Fok Kkk P
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0 t :
_5_

—-101

NYU

0 5 10 15 20

0.0 0.1 0.2
Surprisal (bits)

Transformer LMs (even Pythia
70M!) predict repeated text
with near-zero surprisal

“Surprisal collapse” (Gruteke Klein

et al. 2024): surprisal is unable to

capture reading times during
repeated reading
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https://aclanthology.org/2024.conll-1.17/
https://aclanthology.org/2024.conll-1.17/

More recently (3)

(b) Press et al. (2022)

We can bake in a recency bias by
intervening on the attention weights

This has the effect of downweighting
earlier tokens in the input context

Linear recency bias during training
improves Transformers'’ fit to reading
times
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Recency bias helps, under specific circumstances
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TL;DR

Computational psycholinguistics aims to develop computational models of the
cognitive mechanism underlying language comprehension

LMs can be evaluated as models of predictive processing under surprisal theory
by using surprisal to model reading times

Modern Transformer LMs seem to be ‘superhuman’ for two reasons
e During training: Models learn too much parametric knowledge
e During inference: Transformers tend to copy earlier input tokens

ANYU o0



In the works

Applying “model editing” techniques for the completely opposite purpose

Using LM surprisal to model reading times in Chinese
e People have to perform word segmentation implicitly

Tweaking state space models to implement human-like limitations in memory

ANYU
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Thanks for listening!

oh.b@nyu.edu
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