

Why Does Surprisal From Larger Transformer-Based Language Models Provide a Poorer Fit to Human Reading Times?

Byung-Doh Oh, William Schuler

Introduction

• Expectation-based theories of sentence processing (Hale, 2001; Levy, 2008)

• Surprisal from LMs evaluated on measures of processing difficulty (e.g. Smith and Levy, 2013; Hale et al., 2018)

• Conflicting results regarding LM perplexity and fit to reading times (Goodkind and Bicknell 2018; Wilcox et al., 2020; Oh et al., 2022)

This Work

1. Evaluation of LLM surprisal on ability to predict human reading times

2. Identifying data points that drive the trend in fit to human reading times

Replication Study: Evaluation on Reading Times

- Regression models fit to reading times of Natural Stories and Dundee (Futrell et al., 2021; Kennedy et al., 2003)
- Baseline predictors: word length/position, saccade length, previous word fixated
- Predictors of interest: LM surprisal
- Evaluation metric: $\Delta \log$ -likelihood (ΔLL)

Model	#L	#H	d_{model}	Parameters
GPT-2 Small	12	12	768	$\sim 124 M$
GPT-2 Medium	24	16	1024	\sim 355M
GPT-2 Large	36	20	1280	\sim 774M
GPT-2 XL	48	25	1600	$\sim \! 1558 M$
GPT-Neo 125M	12	12	768	~125M
GPT-Neo 1300M	24	16	2048	$\sim \! 1300 M$
GPT-Neo 2700M	32	20	2560	$\sim 2700 M$
GPT-J 6B	28	16	4096	$\sim 6000 \mathrm{M}$
GPT-NeoX 20B	44	64	6144	$\sim 20000 \text{M}$
OPT 125M	12	12	768	~125M
OPT 350M	24	16	1024	$\sim 350 M$
OPT 1.3B	24	32	2048	$\sim \! 1300 M$
OPT 2.7B	32	32	2560	$\sim 2700 M$
OPT 6.7B	32	32	4096	$\sim 6700 M$
OPT 13B	40	40	5120	$\sim \! 13000 M$
OPT 30B	48	56	7168	\sim 30000M
OPT 66B	64	72	9216	$\sim 66000 M$

Replication Study: Evaluation on Reading Times

Post-hoc Analysis: Linguistic Phenomena Underlying the Trend

- Data points associated with word-level and syntactic properties (Shain et al., 2018)
- Subsets with the largest differences in SE between models identified

Post-hoc Analysis: Linguistic Phenomena Underlying the Trend

Post-hoc Analysis: Linguistic Phenomena Underlying the Trend

- Data points associated with word-level and syntactic properties (Shain et al., 2018)
- Subsets with the largest differences in SE between models identified

• Data points further categorized as underpredictions or overpredictions

Nouns before REL (n=8059) Named entities (n=8788) Predicative ADJ (n=9532) End of len \geq 4 embedding (*n*=19497) Modals (n=5467)402 - 3 147 310 - 4 3 855 - 43 2 1 520 146 400 850 2 145 2 308 515 1 397 155 201 322 320 4 110 162 1 3 3 2 160 -200 317 157 150 199 108 · 7.0 6.0 7.5 8.0 8.5 5.0 5.5 4.6 5.0 6.0 6.5 5.0 7.0 4.5 4.8 Named entities (n=9259)Nouns before REL (n=7588) Attributive ADJ (n=30790) Predicative ADJ (n=9532) Modals (n=5467) 312 - 54 1720 147 570 - 5 4 362 4 1 3 310 3 360 1700 2 145 560 357 1 650 SSE 170 200 145 110 2 5 4 142 -108 160 625 197 8.0 6.0 7.0 7.0 8.0 4.2 4.5 5.0 4.0 5.0 6.0 7.0 5.0 6.0 4.8 Named entities (n=9259) Nouns before REL (n=7588) End of len ≥ 4 embedding (n=20765) Attributive ADJ (n=30465) DLT≥3 (*n*=18213) 1680 🖉 💁 **5 4 3** 570 7.65 43 360 707 -900 4_3 в 1670 560 2 4 355 2 1 4 2 705 895 345 640 322 170 145 87.65 43 4 340 2 160 320 620 140 5.0 5.5 4.0 5.0 6.0 7.0 5.0 6.0 7.0 4.0 6.0 7.0 8.0 5.0 6.0 6.5 Average Surprisal

Natural Stories SPR

Dundee ET

Conclusion

• 'Bigger-is-worse' effect of LM surprisal robustly replicated (Oh et al., 2022)

• Effect mostly driven by underprediction of reading times by LM surprisal (see e.g. van Schijndel and Linzen, 2021; Hahn et al., 2022)

• Smaller pre-trained LMs should be used to study sentence processing

The Ohio State University

Thank you!

This work was supported by NSF Grant #1816891.

Code for this work is publicly available at https://github.com/byungdoh/llm_surprisal.

Supplementary: Top-5 Subsets (Natural Stories)

Supplementary: Top-5 Subsets (Dundee)

Supplementary: Regression Modeling

- Filtering criteria
 - SPR: initial/final words, <100 ms, >3000 ms, <4 correct answers
 - ET: initial/final words, unfixated words, after >4 word saccades
- By-subject random slopes for all main effects
 - (1 | subject:sentence) for Natural Stories
 - (1 | sentence) for Dundee