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Prediction in human sentence processing

The boy will eat the
ball

cake

cake is easier to process than ball because P(cake | ...) > P(ball | ...) (Hale, 2001; Levy, 2008)

Surprisal has gained strong empirical support from measures of comprehension difficulty
(e.g. Demberg & Keller, 2008; Shain et al., 2020; Smith & Levy, 2013)
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Prediction in human sentence processing

Open questions about the probability distribution of the human comprehender

Computational modeling helps us understand what this distribution is (or is not)

This talk will highlight the systematic divergence of large language models (LLMs)
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Roadmap

1 Phenomenon #1: The bigger-is-worse effect of model size (Oh & Schuler, 2023a)

2 Phenomenon #2: The bigger-is-worse effect of training data (Oh & Schuler, 2023b)

3 Preliminary analyses towards a unified explanation

4 Conclusion
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Phenomenon #1: The bigger-is-worse effect of model size

Oh and Schuler (2023a). Why does surprisal from larger Transformer-based language models provide a poorer fit to
human reading times? TACL.
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Introduction

Conflicting results about the relationship between LM perplexity and fit to reading times

Wilcox et al. (2020) Oh et al. (2022)

Qualitative analysis into the trend observed for LLM surprisal
6 / 43



Main experiment: Evaluation of LLM surprisal on human reading times

Regression models fit to reading times of
Natural Stories and Dundee corpora
(Futrell et al., 2021; Kennedy et al., 2003)

Baseline predictors: word length/position,
saccade length, previous word fixated

Predictors of interest: LLM surprisal
(Black et al., 2022; Black et al., 2021; Radford et al.,
2019; Wang & Komatsuzaki, 2021; Zhang et al., 2022)

Evaluation metric: ∆log-likelihood (∆LL)

Model #L #H dmodel
GPT-2 Small 12 12 768
GPT-2 Medium 24 16 1024
GPT-2 Large 36 20 1280
GPT-2 XL 48 25 1600
GPT-Neo 125M 12 12 768
GPT-Neo 1.3B 24 16 2048
GPT-Neo 2.7B 32 20 2560
GPT-J 6B 28 16 4096
GPT-NeoX 20B 44 64 6144
OPT 125M 12 12 768
OPT 350M 24 16 1024
OPT 1.3B 24 32 2048
OPT 2.7B 32 32 2560
OPT 6.7B 32 32 4096
OPT 13B 40 40 5120
OPT 30B 48 56 7168
OPT 66B 64 72 9216
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Analysis: Linguistic phenomena underlying the trend
Data points associated with word-level and syntactic properties (Shain et al., 2018)

Subsets with the largest differences in MSE between models identified
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Summary: Bigger-is-worse effect of model size

Strictly monotonic, positive relationship between LM perplexity and fit to reading times

Effect mostly driven by underprediction of reading times by LLM surprisal
(see e.g. Arehalli et al., 2022; Hahn et al., 2022; van Schijndel & Linzen, 2021)

Likely due to extensive domain knowledge from massive amounts of training examples
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Phenomenon #2: The bigger-is-worse effect of training data

Oh and Schuler (2023b). Transformer-based language model surprisal predicts human reading times best with about two
billion training tokens. Findings of the ACL: EMNLP 2023.
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Introduction

(Still) conflicting results about LM perplexity and fit to reading times

Wilcox et al. (2020) Oh and Schuler (2023a)

Covering the middle ground by evaluating smaller models trained on less data
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Experiment 1: Influence of training data size

Regression models fit to reading times of
Natural Stories and Dundee corpora
(Futrell et al., 2021; Kennedy et al., 2003)

Baseline predictors: word length/position,
saccade length, previous word fixated

Predictors of interest: LLM surprisal
(Biderman et al., 2023)

Evaluation metric: ∆log-likelihood (∆LL)

Model #L #H dmodel
Pythia 70M 6 8 512
Pythia 160M 12 12 768
Pythia 410M 24 16 1024
Pythia 1B 16 8 2048
Pythia 1.4B 24 16 2048
Pythia 2.8B 32 32 2560
Pythia 6.9B 32 32 4096
Pythia 12B 36 40 5120

Checkpoints available after {1, 2, 4, ..., 512, 1000,
2000, ..., 142000, 143000} training steps
Trained in batches of 1024×2048 tokens
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Experiment 2: Influence of model size

Smaller LMs trained following the procedures of the Pythia LM

Model #L #H dmodel #Parameters
Repro 1-1-64 1 1 64 ∼6M
Repro 1-2-128 1 2 128 ∼13M
Repro 2-2-128 2 2 128 ∼13M
Repro 2-3-192 2 3 192 ∼20M
Repro 2-4-256 2 4 256 ∼27M
Repro 3-4-256 3 4 256 ∼28M
Repro 4-6-384 4 6 384 ∼46M
Repro 6-8-512 6 8 512 ∼70M

LMs evaluated after {1, 2, 4, ..., 512, 1000, 1500, ..., 9500, 10000} training steps
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Summary: Bigger-is-worse effect of training data

Fit to reading times starts to degrade after about two billion tokens of training data

Very strong interaction between model size and amount of training data

Consolidates conflicting results about LM perplexity and fit to reading times
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Preliminary analyses towards a unified explanation
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Two open questions

What do all LMs learn similarly during early training?
What do larger LMs learn differently after early training?
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Function words seem to be learned early

“On manual inspection, stagnated tokens are primarily non-content words such as prepositions,
determiners, and punctuations.”

Xia et al. (2023). Training trajectories of language models across scales. In Proc. ACL.
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Larger LMs learn quicker with limited examples

T (N, τ): Number of gradient updates for a model with N parameters to reach probability of τ

Tirumala et al. (2022). Memorization without overfitting: Analyzing the training dynamics of large language models. In
Proc. NeurIPS.
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Working hypothesis
LMs begin to learn to predict rare words after a certain point in training, with larger LMs doing
so more efficiently. This leads to the bigger-is-worse effects of model size and training data.
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Bigger-is-worse effect of model size, revisited

Lowest 20% by unigram frequency Other 80%
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Bigger-is-worse effect of training data, revisited

Lowest 20% by unigram frequency Other 80%
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Conclusion
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Conclusion

Bigger-is-worse effects of model size and training data (Oh & Schuler, 2023a, 2023b)

Preliminary results suggest that frequency may explain these two effects

This systematic divergence sheds light on what human sentence processing is not
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Thank you for listening!

oh.531@osu.edu byungdoh.github.io
byungdoh/{llm_surprisal,slm_surprisal}
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Supplementary slides
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Regression modeling procedures

Log-transformed reading times (log ms) in the exploratory partition (∼50%)

Filtering criteria
Natural Stories: initial/final words, <100 ms, >3000 ms, <4 correct answers
Dundee: initial/final words, unfixated words, after >4 word saccades

By-subject random slopes for all main effects
(1 | subject:sentence) for Natural Stories
(1 | sentence) for Dundee
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SLM training procedures

10k batches from the Pile (Gao et al., 2020), in identical order as the Pythia LMs

Adam optimizer (Kingma & Ba, 2015), LR warmed up linearly to 0.001 over the first 1% of
training steps, then lowered to 0.0001 following a cosine annealing schedule

Assumes 143000 training steps for comparability with Pythia LMs
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Bigger-is-worse effect of model size, revisited (Dundee)

Lowest 20% by unigram frequency Other 80%
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Bigger-is-worse effect of training data, revisited (Dundee)

Lowest 20% by unigram frequency Other 80%
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