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The more predictable train is easier to process than camel
(Balota et al., 1985; Ehrlich & Rayner, 1981; Kutas & Hillyard, 1980)
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Human subject data: Word-by-word reading times
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Assumption: Processing difficulty causes delays in reading times!



Computational models: Large language models (LLMs)

Figure from Borealis AI
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Link between human behavior and LLMs (Surprisal theory; Hale, 2001; Levy, 2008)
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RT(train) ∝ − log2 P(train | I landed in Frankfurt and took a)
RT(camel) ∝ − log2 P(camel | I landed in Frankfurt and took a)



Link between human behavior and LLMs (Surprisal theory; Hale, 2001; Levy, 2008)
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Evaluation: How well does surprisal from Model n fit to human reading times?
(through regression modeling)



Roadmap

1 Phenomenon #1: The bigger-is-worse effect of model size (Oh & Schuler, 2023a)

2 Phenomenon #2: The bigger-is-worse effect of training data (Oh & Schuler, 2023b)

3 Word frequency as a unified explanation (Oh, Yue, & Schuler, 2024)

4 Conclusion
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Phenomenon #1: The bigger-is-worse effect of model size

Oh and Schuler (2023a). Why does surprisal from larger Transformer-based language models provide a poorer fit to
human reading times? TACL.
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Replication with more LLM families

Regression models fit to reading times of
Natural Stories and Dundee corpora
(Futrell et al., 2021; Kennedy et al., 2003)

Baseline predictors: word length/position,
saccade length, previous word fixated

Predictors of interest: LLM surprisal

Evaluation metric: ∆log-likelihood (∆LL);
how well does surprisal fit to RT?

Model #L #H dmodel
GPT-2 Small 12 12 768
GPT-2 Medium 24 16 1024
GPT-2 Large 36 20 1280
GPT-2 XL 48 25 1600
GPT-Neo 125M 12 12 768
GPT-Neo 1.3B 24 16 2048
GPT-Neo 2.7B 32 20 2560
GPT-J 6B 28 16 4096
GPT-NeoX 20B 44 64 6144
OPT 125M 12 12 768
OPT 350M 24 16 1024
OPT 1.3B 24 32 2048
OPT 2.7B 32 32 2560
OPT 6.7B 32 32 4096
OPT 13B 40 40 5120
OPT 30B 48 56 7168
OPT 66B 64 72 9216
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What linguistic factors drive this trend?

Subsets defined by word-level and syntactic properties (Shain et al., 2018)

Subsets with the largest differences in MSE between models identified
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Summary: Bigger-is-worse effect of model size

Surprisal from larger models show strictly poorer fits to human reading times

Effect mostly driven by underprediction of reading times by LLM surprisal
(see e.g. Arehalli et al., 2022; Hahn et al., 2022; van Schijndel & Linzen, 2021)

Likely due to extensive domain knowledge from massive amounts of training examples
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Phenomenon #2: The bigger-is-worse effect of training data

Oh and Schuler (2023b). Transformer-based language model surprisal predicts human reading times best with about two
billion training tokens. Findings of EMNLP.
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Evaluating LLMs trained on less data

Regression models fit and ∆LL calculated

Predictors of interest: LLM surprisal

Trained on identical batches of
1024×2048 (∼2 million) tokens

Checkpoints available after {1, 2, 4, ...,
512, 1000, 2000, ..., 143000} batches

Model #L #H dmodel
Pythia 70M 6 8 512
Pythia 160M 12 12 768
Pythia 410M 24 16 1024
Pythia 1B 16 8 2048
Pythia 1.4B 24 16 2048
Pythia 2.8B 32 32 2560
Pythia 6.9B 32 32 4096
Pythia 12B 36 40 5120
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How small can we go?

Smaller LMs trained following the procedures of the Pythia LM

Model #L #H dmodel #Parameters
Repro 1-1-64 1 1 64 ∼6M
Repro 1-2-128 1 2 128 ∼13M
Repro 2-2-128 2 2 128 ∼13M
Repro 2-3-192 2 3 192 ∼20M
Repro 2-4-256 2 4 256 ∼27M
Repro 3-4-256 3 4 256 ∼28M
Repro 4-6-384 4 6 384 ∼46M
Repro 6-8-512 6 8 512 ∼70M

LMs evaluated after {1, 2, 4, ..., 512, 1000, 1500, ..., 10000} training steps
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Summary: Bigger-is-worse effect of training data

Fit to reading times starts to degrade after about two billion tokens of training data

Strong interaction between model size and training data amount after the peak

Consolidates conflicting results about LM perplexity and fit to reading times
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Word frequency as a unified explanation

Oh, Yue, and Schuler (2024). Frequency explains the inverse correlation of large language models’ size, training data
amount, and surprisal’s fit to reading times. Proceedings of EACL.
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Insights from the scaling behavior of LLMs

Larger models ‘learn faster’ given the same amount of exposure (Tirumala et al., 2022)

Early in training, all models similarly learn to predict frequent function words (Xia et al., 2023)

Word frequency modulates the difference in surprisal estimates as a function of model size and
training data amount, which drives their adverse effects on fit to human reading times.
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Revisiting the bigger-is-worse effect of model size

LME models fit to reading times of Natural Stories, Dundee, Ghent, and Provo corpora
(Cop et al., 2017; Futrell et al., 2021; Kennedy et al., 2003; Luke & Christianson, 2018)

Baseline predictors: Word length/position, unigram surprisal (The Pile; Gao et al., 2020),
saccade length, previous word fixated

Predictors of interest: LLM surprisal

Mean squared errors calculated on each quintile defined by unigram log-probability
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Revisiting the bigger-is-worse effect of training data amount

Similar regression modeling procedures as Experiment 1

Pythia surprisal after {0, 128, 256, 512, 1k, 2k, 4k, 8k, 143k} training steps

Surprisal values and MSEs analyzed by quintile defined by unigram log-probability
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What enables larger models to predict rare words?

One possibility is that larger models have a longer ‘effective’ context window

Method: Limiting the context to the most recent {49, 24, 9} tokens (Kuribayashi et al., 2022)
I landed in Frankfurt and took a ____ → and took a ____

Change in Pythia surprisal values analyzed on the quintile of the rarest words
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Summary: Word frequency as a unified explanation

Word frequency explains the adverse effects of model size and training data amount

Larger model and training data sizes contribute to accurate predictions of rare words

The associations that give larger models an advantage are widespread
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